Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Visualization version   GIF version

Theorem lfl1dim 36417
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 3115 . 2 {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))}
2 lfl1dim.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
3 lveclmod 19871 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
5 lfl1dim.d . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑊)
6 lfl1dim.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐷)
7 eqid 2798 . . . . . . . . . . . 12 (0g𝐷) = (0g𝐷)
85, 6, 7lmod0cl 19653 . . . . . . . . . . 11 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
94, 8syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐷) ∈ 𝐾)
109ad2antrr 725 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
11 simpr 488 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
12 lfl1dim.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lfl1dim.f . . . . . . . . . . 11 𝐹 = (LFnl‘𝑊)
14 lfl1dim.t . . . . . . . . . . 11 · = (.r𝐷)
154ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
16 lfl1dim.g . . . . . . . . . . . 12 (𝜑𝐺𝐹)
1716ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 36378 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1911, 18eqtr4d 2836 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
20 sneq 4535 . . . . . . . . . . . 12 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2120xpeq2d 5549 . . . . . . . . . . 11 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2221oveq2d 7151 . . . . . . . . . 10 (𝑘 = (0g𝐷) → (𝐺f · (𝑉 × {𝑘})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2322rspceeqv 3586 . . . . . . . . 9 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺f · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2410, 19, 23syl2anc 587 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2524a1d 25 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
269ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
27 lfl1dim.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
284ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
29 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
3012, 13, 27, 28, 29lkrssv 36392 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
314adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3216adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝐺𝐹)
335, 7, 12, 13, 27lkr0f 36390 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3431, 32, 33syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3534biimpar 481 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3635sseq1d 3946 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3736biimpa 480 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3830, 37eqssd 3932 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
395, 7, 12, 13, 27lkr0f 36390 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4028, 29, 39syl2anc 587 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4138, 40mpbid 235 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4216ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4312, 5, 13, 6, 14, 7, 28, 42lfl0sc 36378 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4441, 43eqtr4d 2836 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
4526, 44, 23syl2anc 587 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
4645ex 416 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
47 eqid 2798 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
482ad2antrr 725 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4916ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
50 simprr 772 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5112, 5, 7, 47, 13, 27lkrshp 36401 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5248, 49, 50, 51syl3anc 1368 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
53 simplr 768 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
54 simprl 770 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5512, 5, 7, 47, 13, 27lkrshp 36401 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5648, 53, 54, 55syl3anc 1368 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5747, 48, 52, 56lshpcmp 36284 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
582ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5916ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
60 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
61 simpr 488 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
625, 6, 14, 12, 13, 27eqlkr2 36396 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6358, 59, 60, 61, 62syl121anc 1372 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6463ex 416 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6557, 64sylbid 243 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6625, 46, 65pm2.61da2ne 3075 . . . . . 6 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
672ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6816ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
69 simpr 488 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
7012, 5, 6, 14, 13, 27, 67, 68, 69lkrscss 36394 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7170ex 416 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
72 fveq2 6645 . . . . . . . . . 10 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7372sseq2d 3947 . . . . . . . . 9 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
7473biimprcd 253 . . . . . . . 8 ((𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7571, 74syl6 35 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7675rexlimdv 3242 . . . . . 6 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7766, 76impbid 215 . . . . 5 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
7877pm5.32da 582 . . . 4 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))))
794adantr 484 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑊 ∈ LMod)
8016adantr 484 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝐺𝐹)
81 simpr 488 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑘𝐾)
8212, 5, 6, 14, 13, 79, 80, 81lflvscl 36373 . . . . . . . 8 ((𝜑𝑘𝐾) → (𝐺f · (𝑉 × {𝑘})) ∈ 𝐹)
83 eleq1a 2885 . . . . . . . 8 ((𝐺f · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → 𝑔𝐹))
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → 𝑔𝐹))
8584pm4.71rd 566 . . . . . 6 ((𝜑𝑘𝐾) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) ↔ (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘})))))
8685rexbidva 3255 . . . . 5 (𝜑 → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) ↔ ∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘})))))
87 r19.42v 3303 . . . . 5 (∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘}))) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
8886, 87syl6rbb 291 . . . 4 (𝜑 → ((𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
8978, 88bitrd 282 . . 3 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
9089abbidv 2862 . 2 (𝜑 → {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
911, 90syl5eq 2845 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wrex 3107  {crab 3110  wss 3881  {csn 4525   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560  0gc0g 16705  LModclmod 19627  LVecclvec 19867  LSHypclsh 36271  LFnlclfn 36353  LKerclk 36381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lshyp 36273  df-lfl 36354  df-lkr 36382
This theorem is referenced by:  ldual1dim  36462
  Copyright terms: Public domain W3C validator