Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Visualization version   GIF version

Theorem lfl1dim 37897
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 3434 . 2 {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))}
2 lfl1dim.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
3 lveclmod 20694 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
5 lfl1dim.d . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑊)
6 lfl1dim.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐷)
7 eqid 2733 . . . . . . . . . . . 12 (0g𝐷) = (0g𝐷)
85, 6, 7lmod0cl 20475 . . . . . . . . . . 11 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
94, 8syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐷) ∈ 𝐾)
109ad2antrr 725 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
11 simpr 486 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
12 lfl1dim.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lfl1dim.f . . . . . . . . . . 11 𝐹 = (LFnl‘𝑊)
14 lfl1dim.t . . . . . . . . . . 11 · = (.r𝐷)
154ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
16 lfl1dim.g . . . . . . . . . . . 12 (𝜑𝐺𝐹)
1716ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 37858 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1911, 18eqtr4d 2776 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
20 sneq 4634 . . . . . . . . . . . 12 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2120xpeq2d 5702 . . . . . . . . . . 11 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2221oveq2d 7412 . . . . . . . . . 10 (𝑘 = (0g𝐷) → (𝐺f · (𝑉 × {𝑘})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2322rspceeqv 3631 . . . . . . . . 9 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺f · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2410, 19, 23syl2anc 585 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2524a1d 25 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
269ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
27 lfl1dim.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
284ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
29 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
3012, 13, 27, 28, 29lkrssv 37872 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
314adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3216adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝐺𝐹)
335, 7, 12, 13, 27lkr0f 37870 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3431, 32, 33syl2anc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3534biimpar 479 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3635sseq1d 4011 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3736biimpa 478 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3830, 37eqssd 3997 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
395, 7, 12, 13, 27lkr0f 37870 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4028, 29, 39syl2anc 585 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4138, 40mpbid 231 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4216ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4312, 5, 13, 6, 14, 7, 28, 42lfl0sc 37858 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4441, 43eqtr4d 2776 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
4526, 44, 23syl2anc 585 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
4645ex 414 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
47 eqid 2733 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
482ad2antrr 725 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4916ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
50 simprr 772 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5112, 5, 7, 47, 13, 27lkrshp 37881 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5248, 49, 50, 51syl3anc 1372 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
53 simplr 768 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
54 simprl 770 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5512, 5, 7, 47, 13, 27lkrshp 37881 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5648, 53, 54, 55syl3anc 1372 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5747, 48, 52, 56lshpcmp 37764 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
582ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5916ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
60 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
61 simpr 486 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
625, 6, 14, 12, 13, 27eqlkr2 37876 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6358, 59, 60, 61, 62syl121anc 1376 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6463ex 414 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6557, 64sylbid 239 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6625, 46, 65pm2.61da2ne 3031 . . . . . 6 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
672ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6816ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
69 simpr 486 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
7012, 5, 6, 14, 13, 27, 67, 68, 69lkrscss 37874 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7170ex 414 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
72 fveq2 6881 . . . . . . . . . 10 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7372sseq2d 4012 . . . . . . . . 9 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
7473biimprcd 249 . . . . . . . 8 ((𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7571, 74syl6 35 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7675rexlimdv 3154 . . . . . 6 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7766, 76impbid 211 . . . . 5 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
7877pm5.32da 580 . . . 4 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))))
794adantr 482 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑊 ∈ LMod)
8016adantr 482 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝐺𝐹)
81 simpr 486 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑘𝐾)
8212, 5, 6, 14, 13, 79, 80, 81lflvscl 37853 . . . . . . . 8 ((𝜑𝑘𝐾) → (𝐺f · (𝑉 × {𝑘})) ∈ 𝐹)
83 eleq1a 2829 . . . . . . . 8 ((𝐺f · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → 𝑔𝐹))
8482, 83syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → 𝑔𝐹))
8584pm4.71rd 564 . . . . . 6 ((𝜑𝑘𝐾) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) ↔ (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘})))))
8685rexbidva 3177 . . . . 5 (𝜑 → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) ↔ ∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘})))))
87 r19.42v 3191 . . . . 5 (∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺f · (𝑉 × {𝑘}))) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
8886, 87bitr2di 288 . . . 4 (𝜑 → ((𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
8978, 88bitrd 279 . . 3 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
9089abbidv 2802 . 2 (𝜑 → {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
911, 90eqtrid 2785 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wne 2941  wrex 3071  {crab 3433  wss 3946  {csn 4624   × cxp 5670  cfv 6535  (class class class)co 7396  f cof 7655  Basecbs 17131  .rcmulr 17185  Scalarcsca 17187  0gc0g 17372  LModclmod 20448  LVecclvec 20690  LSHypclsh 37751  LFnlclfn 37833  LKerclk 37861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-0g 17374  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-grp 18809  df-minusg 18810  df-sbg 18811  df-subg 18988  df-cntz 19166  df-lsm 19488  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-drng 20295  df-lmod 20450  df-lss 20520  df-lsp 20560  df-lvec 20691  df-lshyp 37753  df-lfl 37834  df-lkr 37862
This theorem is referenced by:  ldual1dim  37942
  Copyright terms: Public domain W3C validator