Step | Hyp | Ref
| Expression |
1 | | df-rab 3433 |
. 2
β’ {π β πΉ β£ (πΏβπΊ) β (πΏβπ)} = {π β£ (π β πΉ β§ (πΏβπΊ) β (πΏβπ))} |
2 | | lfl1dim.w |
. . . . . . . . . . . 12
β’ (π β π β LVec) |
3 | | lveclmod 20709 |
. . . . . . . . . . . 12
β’ (π β LVec β π β LMod) |
4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β LMod) |
5 | | lfl1dim.d |
. . . . . . . . . . . 12
β’ π· = (Scalarβπ) |
6 | | lfl1dim.k |
. . . . . . . . . . . 12
β’ πΎ = (Baseβπ·) |
7 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ·) = (0gβπ·) |
8 | 5, 6, 7 | lmod0cl 20490 |
. . . . . . . . . . 11
β’ (π β LMod β
(0gβπ·)
β πΎ) |
9 | 4, 8 | syl 17 |
. . . . . . . . . 10
β’ (π β (0gβπ·) β πΎ) |
10 | 9 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β
(0gβπ·)
β πΎ) |
11 | | simpr 485 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β π = (π Γ {(0gβπ·)})) |
12 | | lfl1dim.v |
. . . . . . . . . . 11
β’ π = (Baseβπ) |
13 | | lfl1dim.f |
. . . . . . . . . . 11
β’ πΉ = (LFnlβπ) |
14 | | lfl1dim.t |
. . . . . . . . . . 11
β’ Β· =
(.rβπ·) |
15 | 4 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β π β LMod) |
16 | | lfl1dim.g |
. . . . . . . . . . . 12
β’ (π β πΊ β πΉ) |
17 | 16 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β πΊ β πΉ) |
18 | 12, 5, 13, 6, 14, 7, 15, 17 | lfl0sc 37940 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β (πΊ βf Β· (π Γ {(0gβπ·)})) = (π Γ {(0gβπ·)})) |
19 | 11, 18 | eqtr4d 2775 |
. . . . . . . . 9
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β π = (πΊ βf Β· (π Γ {(0gβπ·)}))) |
20 | | sneq 4637 |
. . . . . . . . . . . 12
β’ (π = (0gβπ·) β {π} = {(0gβπ·)}) |
21 | 20 | xpeq2d 5705 |
. . . . . . . . . . 11
β’ (π = (0gβπ·) β (π Γ {π}) = (π Γ {(0gβπ·)})) |
22 | 21 | oveq2d 7421 |
. . . . . . . . . 10
β’ (π = (0gβπ·) β (πΊ βf Β· (π Γ {π})) = (πΊ βf Β· (π Γ {(0gβπ·)}))) |
23 | 22 | rspceeqv 3632 |
. . . . . . . . 9
β’
(((0gβπ·) β πΎ β§ π = (πΊ βf Β· (π Γ {(0gβπ·)}))) β βπ β πΎ π = (πΊ βf Β· (π Γ {π}))) |
24 | 10, 19, 23 | syl2anc 584 |
. . . . . . . 8
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β βπ β πΎ π = (πΊ βf Β· (π Γ {π}))) |
25 | 24 | a1d 25 |
. . . . . . 7
β’ (((π β§ π β πΉ) β§ π = (π Γ {(0gβπ·)})) β ((πΏβπΊ) β (πΏβπ) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
26 | 9 | ad3antrrr 728 |
. . . . . . . . 9
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β (0gβπ·) β πΎ) |
27 | | lfl1dim.l |
. . . . . . . . . . . . 13
β’ πΏ = (LKerβπ) |
28 | 4 | ad3antrrr 728 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β π β LMod) |
29 | | simpllr 774 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β π β πΉ) |
30 | 12, 13, 27, 28, 29 | lkrssv 37954 |
. . . . . . . . . . . 12
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β (πΏβπ) β π) |
31 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β πΉ) β π β LMod) |
32 | 16 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β πΉ) β πΊ β πΉ) |
33 | 5, 7, 12, 13, 27 | lkr0f 37952 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ πΊ β πΉ) β ((πΏβπΊ) = π β πΊ = (π Γ {(0gβπ·)}))) |
34 | 31, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β πΉ) β ((πΏβπΊ) = π β πΊ = (π Γ {(0gβπ·)}))) |
35 | 34 | biimpar 478 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β (πΏβπΊ) = π) |
36 | 35 | sseq1d 4012 |
. . . . . . . . . . . . 13
β’ (((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β ((πΏβπΊ) β (πΏβπ) β π β (πΏβπ))) |
37 | 36 | biimpa 477 |
. . . . . . . . . . . 12
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β π β (πΏβπ)) |
38 | 30, 37 | eqssd 3998 |
. . . . . . . . . . 11
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β (πΏβπ) = π) |
39 | 5, 7, 12, 13, 27 | lkr0f 37952 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ π β πΉ) β ((πΏβπ) = π β π = (π Γ {(0gβπ·)}))) |
40 | 28, 29, 39 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β ((πΏβπ) = π β π = (π Γ {(0gβπ·)}))) |
41 | 38, 40 | mpbid 231 |
. . . . . . . . . 10
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β π = (π Γ {(0gβπ·)})) |
42 | 16 | ad3antrrr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β πΊ β πΉ) |
43 | 12, 5, 13, 6, 14, 7, 28, 42 | lfl0sc 37940 |
. . . . . . . . . 10
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β (πΊ βf Β· (π Γ {(0gβπ·)})) = (π Γ {(0gβπ·)})) |
44 | 41, 43 | eqtr4d 2775 |
. . . . . . . . 9
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β π = (πΊ βf Β· (π Γ {(0gβπ·)}))) |
45 | 26, 44, 23 | syl2anc 584 |
. . . . . . . 8
β’ ((((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β§ (πΏβπΊ) β (πΏβπ)) β βπ β πΎ π = (πΊ βf Β· (π Γ {π}))) |
46 | 45 | ex 413 |
. . . . . . 7
β’ (((π β§ π β πΉ) β§ πΊ = (π Γ {(0gβπ·)})) β ((πΏβπΊ) β (πΏβπ) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
47 | | eqid 2732 |
. . . . . . . . 9
β’
(LSHypβπ) =
(LSHypβπ) |
48 | 2 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β π β LVec) |
49 | 16 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β πΊ β πΉ) |
50 | | simprr 771 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β πΊ β (π Γ {(0gβπ·)})) |
51 | 12, 5, 7, 47, 13, 27 | lkrshp 37963 |
. . . . . . . . . 10
β’ ((π β LVec β§ πΊ β πΉ β§ πΊ β (π Γ {(0gβπ·)})) β (πΏβπΊ) β (LSHypβπ)) |
52 | 48, 49, 50, 51 | syl3anc 1371 |
. . . . . . . . 9
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β (πΏβπΊ) β (LSHypβπ)) |
53 | | simplr 767 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β π β πΉ) |
54 | | simprl 769 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β π β (π Γ {(0gβπ·)})) |
55 | 12, 5, 7, 47, 13, 27 | lkrshp 37963 |
. . . . . . . . . 10
β’ ((π β LVec β§ π β πΉ β§ π β (π Γ {(0gβπ·)})) β (πΏβπ) β (LSHypβπ)) |
56 | 48, 53, 54, 55 | syl3anc 1371 |
. . . . . . . . 9
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β (πΏβπ) β (LSHypβπ)) |
57 | 47, 48, 52, 56 | lshpcmp 37846 |
. . . . . . . 8
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β ((πΏβπΊ) β (πΏβπ) β (πΏβπΊ) = (πΏβπ))) |
58 | 2 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β§ (πΏβπΊ) = (πΏβπ)) β π β LVec) |
59 | 16 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β§ (πΏβπΊ) = (πΏβπ)) β πΊ β πΉ) |
60 | | simpllr 774 |
. . . . . . . . . 10
β’ ((((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β§ (πΏβπΊ) = (πΏβπ)) β π β πΉ) |
61 | | simpr 485 |
. . . . . . . . . 10
β’ ((((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β§ (πΏβπΊ) = (πΏβπ)) β (πΏβπΊ) = (πΏβπ)) |
62 | 5, 6, 14, 12, 13, 27 | eqlkr2 37958 |
. . . . . . . . . 10
β’ ((π β LVec β§ (πΊ β πΉ β§ π β πΉ) β§ (πΏβπΊ) = (πΏβπ)) β βπ β πΎ π = (πΊ βf Β· (π Γ {π}))) |
63 | 58, 59, 60, 61, 62 | syl121anc 1375 |
. . . . . . . . 9
β’ ((((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β§ (πΏβπΊ) = (πΏβπ)) β βπ β πΎ π = (πΊ βf Β· (π Γ {π}))) |
64 | 63 | ex 413 |
. . . . . . . 8
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β ((πΏβπΊ) = (πΏβπ) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
65 | 57, 64 | sylbid 239 |
. . . . . . 7
β’ (((π β§ π β πΉ) β§ (π β (π Γ {(0gβπ·)}) β§ πΊ β (π Γ {(0gβπ·)}))) β ((πΏβπΊ) β (πΏβπ) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
66 | 25, 46, 65 | pm2.61da2ne 3030 |
. . . . . 6
β’ ((π β§ π β πΉ) β ((πΏβπΊ) β (πΏβπ) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
67 | 2 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ π β πΎ) β π β LVec) |
68 | 16 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ π β πΎ) β πΊ β πΉ) |
69 | | simpr 485 |
. . . . . . . . . 10
β’ (((π β§ π β πΉ) β§ π β πΎ) β π β πΎ) |
70 | 12, 5, 6, 14, 13, 27, 67, 68, 69 | lkrscss 37956 |
. . . . . . . . 9
β’ (((π β§ π β πΉ) β§ π β πΎ) β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π})))) |
71 | 70 | ex 413 |
. . . . . . . 8
β’ ((π β§ π β πΉ) β (π β πΎ β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π}))))) |
72 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = (πΊ βf Β· (π Γ {π})) β (πΏβπ) = (πΏβ(πΊ βf Β· (π Γ {π})))) |
73 | 72 | sseq2d 4013 |
. . . . . . . . 9
β’ (π = (πΊ βf Β· (π Γ {π})) β ((πΏβπΊ) β (πΏβπ) β (πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π}))))) |
74 | 73 | biimprcd 249 |
. . . . . . . 8
β’ ((πΏβπΊ) β (πΏβ(πΊ βf Β· (π Γ {π}))) β (π = (πΊ βf Β· (π Γ {π})) β (πΏβπΊ) β (πΏβπ))) |
75 | 71, 74 | syl6 35 |
. . . . . . 7
β’ ((π β§ π β πΉ) β (π β πΎ β (π = (πΊ βf Β· (π Γ {π})) β (πΏβπΊ) β (πΏβπ)))) |
76 | 75 | rexlimdv 3153 |
. . . . . 6
β’ ((π β§ π β πΉ) β (βπ β πΎ π = (πΊ βf Β· (π Γ {π})) β (πΏβπΊ) β (πΏβπ))) |
77 | 66, 76 | impbid 211 |
. . . . 5
β’ ((π β§ π β πΉ) β ((πΏβπΊ) β (πΏβπ) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
78 | 77 | pm5.32da 579 |
. . . 4
β’ (π β ((π β πΉ β§ (πΏβπΊ) β (πΏβπ)) β (π β πΉ β§ βπ β πΎ π = (πΊ βf Β· (π Γ {π}))))) |
79 | 4 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β πΎ) β π β LMod) |
80 | 16 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β πΎ) β πΊ β πΉ) |
81 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π β πΎ) β π β πΎ) |
82 | 12, 5, 6, 14, 13, 79, 80, 81 | lflvscl 37935 |
. . . . . . . 8
β’ ((π β§ π β πΎ) β (πΊ βf Β· (π Γ {π})) β πΉ) |
83 | | eleq1a 2828 |
. . . . . . . 8
β’ ((πΊ βf Β· (π Γ {π})) β πΉ β (π = (πΊ βf Β· (π Γ {π})) β π β πΉ)) |
84 | 82, 83 | syl 17 |
. . . . . . 7
β’ ((π β§ π β πΎ) β (π = (πΊ βf Β· (π Γ {π})) β π β πΉ)) |
85 | 84 | pm4.71rd 563 |
. . . . . 6
β’ ((π β§ π β πΎ) β (π = (πΊ βf Β· (π Γ {π})) β (π β πΉ β§ π = (πΊ βf Β· (π Γ {π}))))) |
86 | 85 | rexbidva 3176 |
. . . . 5
β’ (π β (βπ β πΎ π = (πΊ βf Β· (π Γ {π})) β βπ β πΎ (π β πΉ β§ π = (πΊ βf Β· (π Γ {π}))))) |
87 | | r19.42v 3190 |
. . . . 5
β’
(βπ β
πΎ (π β πΉ β§ π = (πΊ βf Β· (π Γ {π}))) β (π β πΉ β§ βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
88 | 86, 87 | bitr2di 287 |
. . . 4
β’ (π β ((π β πΉ β§ βπ β πΎ π = (πΊ βf Β· (π Γ {π}))) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
89 | 78, 88 | bitrd 278 |
. . 3
β’ (π β ((π β πΉ β§ (πΏβπΊ) β (πΏβπ)) β βπ β πΎ π = (πΊ βf Β· (π Γ {π})))) |
90 | 89 | abbidv 2801 |
. 2
β’ (π β {π β£ (π β πΉ β§ (πΏβπΊ) β (πΏβπ))} = {π β£ βπ β πΎ π = (πΊ βf Β· (π Γ {π}))}) |
91 | 1, 90 | eqtrid 2784 |
1
β’ (π β {π β πΉ β£ (πΏβπΊ) β (πΏβπ)} = {π β£ βπ β πΎ π = (πΊ βf Β· (π Γ {π}))}) |