Proof of Theorem lfl1dim
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-rab 3436 | . 2
⊢ {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ (𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔))} | 
| 2 |  | lfl1dim.w | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ LVec) | 
| 3 |  | lveclmod 21106 | . . . . . . . . . . . 12
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 4 | 2, 3 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 5 |  | lfl1dim.d | . . . . . . . . . . . 12
⊢ 𝐷 = (Scalar‘𝑊) | 
| 6 |  | lfl1dim.k | . . . . . . . . . . . 12
⊢ 𝐾 = (Base‘𝐷) | 
| 7 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(0g‘𝐷) = (0g‘𝐷) | 
| 8 | 5, 6, 7 | lmod0cl 20887 | . . . . . . . . . . 11
⊢ (𝑊 ∈ LMod →
(0g‘𝐷)
∈ 𝐾) | 
| 9 | 4, 8 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐷) ∈ 𝐾) | 
| 10 | 9 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) →
(0g‘𝐷)
∈ 𝐾) | 
| 11 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝑉 × {(0g‘𝐷)})) | 
| 12 |  | lfl1dim.v | . . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑊) | 
| 13 |  | lfl1dim.f | . . . . . . . . . . 11
⊢ 𝐹 = (LFnl‘𝑊) | 
| 14 |  | lfl1dim.t | . . . . . . . . . . 11
⊢  · =
(.r‘𝐷) | 
| 15 | 4 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LMod) | 
| 16 |  | lfl1dim.g | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| 17 | 16 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝐺 ∈ 𝐹) | 
| 18 | 12, 5, 13, 6, 14, 7, 15, 17 | lfl0sc 39084 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) | 
| 19 | 11, 18 | eqtr4d 2779 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) | 
| 20 |  | sneq 4635 | . . . . . . . . . . . 12
⊢ (𝑘 = (0g‘𝐷) → {𝑘} = {(0g‘𝐷)}) | 
| 21 | 20 | xpeq2d 5714 | . . . . . . . . . . 11
⊢ (𝑘 = (0g‘𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g‘𝐷)})) | 
| 22 | 21 | oveq2d 7448 | . . . . . . . . . 10
⊢ (𝑘 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑘})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) | 
| 23 | 22 | rspceeqv 3644 | . . . . . . . . 9
⊢
(((0g‘𝐷) ∈ 𝐾 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) | 
| 24 | 10, 19, 23 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) | 
| 25 | 24 | a1d 25 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 26 | 9 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (0g‘𝐷) ∈ 𝐾) | 
| 27 |  | lfl1dim.l | . . . . . . . . . . . . 13
⊢ 𝐿 = (LKer‘𝑊) | 
| 28 | 4 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑊 ∈ LMod) | 
| 29 |  | simpllr 775 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) | 
| 30 | 12, 13, 27, 28, 29 | lkrssv 39098 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) ⊆ 𝑉) | 
| 31 | 4 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝑊 ∈ LMod) | 
| 32 | 16 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝐺 ∈ 𝐹) | 
| 33 | 5, 7, 12, 13, 27 | lkr0f 39096 | . . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) | 
| 34 | 31, 32, 33 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) | 
| 35 | 34 | biimpar 477 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) = 𝑉) | 
| 36 | 35 | sseq1d 4014 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ 𝑉 ⊆ (𝐿‘𝑔))) | 
| 37 | 36 | biimpa 476 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑉 ⊆ (𝐿‘𝑔)) | 
| 38 | 30, 37 | eqssd 4000 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) = 𝑉) | 
| 39 | 5, 7, 12, 13, 27 | lkr0f 39096 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) | 
| 40 | 28, 29, 39 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) | 
| 41 | 38, 40 | mpbid 232 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝑉 × {(0g‘𝐷)})) | 
| 42 | 16 | ad3antrrr 730 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) | 
| 43 | 12, 5, 13, 6, 14, 7, 28, 42 | lfl0sc 39084 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) | 
| 44 | 41, 43 | eqtr4d 2779 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) | 
| 45 | 26, 44, 23 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) | 
| 46 | 45 | ex 412 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 47 |  | eqid 2736 | . . . . . . . . 9
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) | 
| 48 | 2 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑊 ∈ LVec) | 
| 49 | 16 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ∈ 𝐹) | 
| 50 |  | simprr 772 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) | 
| 51 | 12, 5, 7, 47, 13, 27 | lkrshp 39107 | . . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) | 
| 52 | 48, 49, 50, 51 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) | 
| 53 |  | simplr 768 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ∈ 𝐹) | 
| 54 |  | simprl 770 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) | 
| 55 | 12, 5, 7, 47, 13, 27 | lkrshp 39107 | . . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) | 
| 56 | 48, 53, 54, 55 | syl3anc 1372 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) | 
| 57 | 47, 48, 52, 56 | lshpcmp 38990 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) = (𝐿‘𝑔))) | 
| 58 | 2 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑊 ∈ LVec) | 
| 59 | 16 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) | 
| 60 |  | simpllr 775 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) | 
| 61 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → (𝐿‘𝐺) = (𝐿‘𝑔)) | 
| 62 | 5, 6, 14, 12, 13, 27 | eqlkr2 39102 | . . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) | 
| 63 | 58, 59, 60, 61, 62 | syl121anc 1376 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) | 
| 64 | 63 | ex 412 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) = (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 65 | 57, 64 | sylbid 240 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 66 | 25, 46, 65 | pm2.61da2ne 3029 | . . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 67 | 2 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LVec) | 
| 68 | 16 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝐺 ∈ 𝐹) | 
| 69 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | 
| 70 | 12, 5, 6, 14, 13, 27, 67, 68, 69 | lkrscss 39100 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 71 | 70 | ex 412 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) | 
| 72 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝑔) = (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 73 | 72 | sseq2d 4015 | . . . . . . . . 9
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) | 
| 74 | 73 | biimprcd 250 | . . . . . . . 8
⊢ ((𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) | 
| 75 | 71, 74 | syl6 35 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔)))) | 
| 76 | 75 | rexlimdv 3152 | . . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) | 
| 77 | 66, 76 | impbid 212 | . . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 78 | 77 | pm5.32da 579 | . . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) ↔ (𝑔 ∈ 𝐹 ∧ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))))) | 
| 79 | 4 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) | 
| 80 | 16 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐺 ∈ 𝐹) | 
| 81 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | 
| 82 | 12, 5, 6, 14, 13, 79, 80, 81 | lflvscl 39079 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐺 ∘f · (𝑉 × {𝑘})) ∈ 𝐹) | 
| 83 |  | eleq1a 2835 | . . . . . . . 8
⊢ ((𝐺 ∘f · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → 𝑔 ∈ 𝐹)) | 
| 84 | 82, 83 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → 𝑔 ∈ 𝐹)) | 
| 85 | 84 | pm4.71rd 562 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) ↔ (𝑔 ∈ 𝐹 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))))) | 
| 86 | 85 | rexbidva 3176 | . . . . 5
⊢ (𝜑 → (∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) ↔ ∃𝑘 ∈ 𝐾 (𝑔 ∈ 𝐹 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))))) | 
| 87 |  | r19.42v 3190 | . . . . 5
⊢
(∃𝑘 ∈
𝐾 (𝑔 ∈ 𝐹 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) ↔ (𝑔 ∈ 𝐹 ∧ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 88 | 86, 87 | bitr2di 288 | . . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐹 ∧ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 89 | 78, 88 | bitrd 279 | . . 3
⊢ (𝜑 → ((𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) | 
| 90 | 89 | abbidv 2807 | . 2
⊢ (𝜑 → {𝑔 ∣ (𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔))} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) | 
| 91 | 1, 90 | eqtrid 2788 | 1
⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) |