Proof of Theorem lfl1dim
Step | Hyp | Ref
| Expression |
1 | | df-rab 3072 |
. 2
⊢ {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ (𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔))} |
2 | | lfl1dim.w |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ LVec) |
3 | | lveclmod 20283 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ LMod) |
5 | | lfl1dim.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (Scalar‘𝑊) |
6 | | lfl1dim.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (Base‘𝐷) |
7 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝐷) = (0g‘𝐷) |
8 | 5, 6, 7 | lmod0cl 20064 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod →
(0g‘𝐷)
∈ 𝐾) |
9 | 4, 8 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝐷) ∈ 𝐾) |
10 | 9 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) →
(0g‘𝐷)
∈ 𝐾) |
11 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝑉 × {(0g‘𝐷)})) |
12 | | lfl1dim.v |
. . . . . . . . . . 11
⊢ 𝑉 = (Base‘𝑊) |
13 | | lfl1dim.f |
. . . . . . . . . . 11
⊢ 𝐹 = (LFnl‘𝑊) |
14 | | lfl1dim.t |
. . . . . . . . . . 11
⊢ · =
(.r‘𝐷) |
15 | 4 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LMod) |
16 | | lfl1dim.g |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
17 | 16 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝐺 ∈ 𝐹) |
18 | 12, 5, 13, 6, 14, 7, 15, 17 | lfl0sc 37023 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
19 | 11, 18 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
20 | | sneq 4568 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0g‘𝐷) → {𝑘} = {(0g‘𝐷)}) |
21 | 20 | xpeq2d 5610 |
. . . . . . . . . . 11
⊢ (𝑘 = (0g‘𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g‘𝐷)})) |
22 | 21 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑘 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑘})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
23 | 22 | rspceeqv 3567 |
. . . . . . . . 9
⊢
(((0g‘𝐷) ∈ 𝐾 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
24 | 10, 19, 23 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
25 | 24 | a1d 25 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
26 | 9 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (0g‘𝐷) ∈ 𝐾) |
27 | | lfl1dim.l |
. . . . . . . . . . . . 13
⊢ 𝐿 = (LKer‘𝑊) |
28 | 4 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑊 ∈ LMod) |
29 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) |
30 | 12, 13, 27, 28, 29 | lkrssv 37037 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) ⊆ 𝑉) |
31 | 4 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝑊 ∈ LMod) |
32 | 16 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝐺 ∈ 𝐹) |
33 | 5, 7, 12, 13, 27 | lkr0f 37035 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
34 | 31, 32, 33 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
35 | 34 | biimpar 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) = 𝑉) |
36 | 35 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ 𝑉 ⊆ (𝐿‘𝑔))) |
37 | 36 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑉 ⊆ (𝐿‘𝑔)) |
38 | 30, 37 | eqssd 3934 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) = 𝑉) |
39 | 5, 7, 12, 13, 27 | lkr0f 37035 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) |
40 | 28, 29, 39 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) |
41 | 38, 40 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝑉 × {(0g‘𝐷)})) |
42 | 16 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) |
43 | 12, 5, 13, 6, 14, 7, 28, 42 | lfl0sc 37023 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
44 | 41, 43 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
45 | 26, 44, 23 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
46 | 45 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
48 | 2 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑊 ∈ LVec) |
49 | 16 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ∈ 𝐹) |
50 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) |
51 | 12, 5, 7, 47, 13, 27 | lkrshp 37046 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) |
52 | 48, 49, 50, 51 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) |
53 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ∈ 𝐹) |
54 | | simprl 767 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) |
55 | 12, 5, 7, 47, 13, 27 | lkrshp 37046 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) |
56 | 48, 53, 54, 55 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) |
57 | 47, 48, 52, 56 | lshpcmp 36929 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) = (𝐿‘𝑔))) |
58 | 2 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑊 ∈ LVec) |
59 | 16 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) |
60 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) |
61 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → (𝐿‘𝐺) = (𝐿‘𝑔)) |
62 | 5, 6, 14, 12, 13, 27 | eqlkr2 37041 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
63 | 58, 59, 60, 61, 62 | syl121anc 1373 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
64 | 63 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) = (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
65 | 57, 64 | sylbid 239 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
66 | 25, 46, 65 | pm2.61da2ne 3032 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
67 | 2 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LVec) |
68 | 16 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝐺 ∈ 𝐹) |
69 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) |
70 | 12, 5, 6, 14, 13, 27, 67, 68, 69 | lkrscss 37039 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) |
71 | 70 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) |
72 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝑔) = (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) |
73 | 72 | sseq2d 3949 |
. . . . . . . . 9
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) |
74 | 73 | biimprcd 249 |
. . . . . . . 8
⊢ ((𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) |
75 | 71, 74 | syl6 35 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔)))) |
76 | 75 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) |
77 | 66, 76 | impbid 211 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
78 | 77 | pm5.32da 578 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) ↔ (𝑔 ∈ 𝐹 ∧ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))))) |
79 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) |
80 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐺 ∈ 𝐹) |
81 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) |
82 | 12, 5, 6, 14, 13, 79, 80, 81 | lflvscl 37018 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐺 ∘f · (𝑉 × {𝑘})) ∈ 𝐹) |
83 | | eleq1a 2834 |
. . . . . . . 8
⊢ ((𝐺 ∘f · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → 𝑔 ∈ 𝐹)) |
84 | 82, 83 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → 𝑔 ∈ 𝐹)) |
85 | 84 | pm4.71rd 562 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) ↔ (𝑔 ∈ 𝐹 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))))) |
86 | 85 | rexbidva 3224 |
. . . . 5
⊢ (𝜑 → (∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) ↔ ∃𝑘 ∈ 𝐾 (𝑔 ∈ 𝐹 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))))) |
87 | | r19.42v 3276 |
. . . . 5
⊢
(∃𝑘 ∈
𝐾 (𝑔 ∈ 𝐹 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) ↔ (𝑔 ∈ 𝐹 ∧ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
88 | 86, 87 | bitr2di 287 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐹 ∧ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
89 | 78, 88 | bitrd 278 |
. . 3
⊢ (𝜑 → ((𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
90 | 89 | abbidv 2808 |
. 2
⊢ (𝜑 → {𝑔 ∣ (𝑔 ∈ 𝐹 ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔))} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) |
91 | 1, 90 | syl5eq 2791 |
1
⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) |