MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdirnn0 Structured version   Visualization version   GIF version

Theorem lgsdirnn0 26397
Description: Variation on lgsdir 26385 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdirnn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 /L 𝑁) = (𝐵 /L 𝑁))
21oveq1d 7270 . . . . . . 7 (𝑥 = 𝐵 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
32eqeq2d 2749 . . . . . 6 (𝑥 = 𝐵 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁))))
4 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
5 nn0z 12273 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 lgscl 26364 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
74, 5, 6syl2anr 596 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
87zcnd 12356 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℂ)
98adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (𝑥 /L 𝑁) ∈ ℂ)
109mul01d 11104 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · 0) = 0)
11 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = 0)
1211oveq2d 7271 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝑥 /L 𝑁) · 0))
1310, 12, 113eqtr4rd 2789 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
14 0z 12260 . . . . . . . . . . . . . 14 0 ∈ ℤ
155adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
16 lgsne0 26388 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
1714, 15, 16sylancr 586 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
18 gcdcom 16148 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
1914, 15, 18sylancr 586 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
20 nn0gcdid0 16156 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁)
2120adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 gcd 0) = 𝑁)
2219, 21eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = 𝑁)
2322eqeq1d 2740 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 ↔ 𝑁 = 1))
24 lgs1 26394 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥 /L 1) = 1)
2524adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 1) = 1)
26 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (𝑥 /L 𝑁) = (𝑥 /L 1))
2726eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑁 = 1 → ((𝑥 /L 𝑁) = 1 ↔ (𝑥 /L 1) = 1))
2825, 27syl5ibrcom 246 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 = 1 → (𝑥 /L 𝑁) = 1))
2923, 28sylbid 239 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 → (𝑥 /L 𝑁) = 1))
3017, 29sylbid 239 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 → (𝑥 /L 𝑁) = 1))
3130imp 406 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (𝑥 /L 𝑁) = 1)
3231oveq1d 7270 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = (1 · (0 /L 𝑁)))
335ad2antrr 722 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → 𝑁 ∈ ℤ)
34 lgscl 26364 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
3514, 33, 34sylancr 586 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℤ)
3635zcnd 12356 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℂ)
3736mulid2d 10924 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (1 · (0 /L 𝑁)) = (0 /L 𝑁))
3832, 37eqtr2d 2779 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
3913, 38pm2.61dane 3031 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
4039ralrimiva 3107 . . . . . . 7 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
41403ad2ant3 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
42 simp2 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
433, 41, 42rspcdva 3554 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4443adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4553ad2ant3 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
4614, 45, 34sylancr 586 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℤ)
4746zcnd 12356 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℂ)
4847adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) ∈ ℂ)
49 lgscl 26364 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
5042, 45, 49syl2anc 583 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℤ)
5150zcnd 12356 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℂ)
5251adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐵 /L 𝑁) ∈ ℂ)
5348, 52mulcomd 10927 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((0 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5444, 53eqtr4d 2781 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
55 oveq1 7262 . . . . 5 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
56 zcn 12254 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
57563ad2ant2 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
5857mul02d 11103 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 · 𝐵) = 0)
5955, 58sylan9eqr 2801 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
6059oveq1d 7270 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
61 simpr 484 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → 𝐴 = 0)
6261oveq1d 7270 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 /L 𝑁) = (0 /L 𝑁))
6362oveq1d 7270 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
6454, 60, 633eqtr4d 2788 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
65 oveq1 7262 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 /L 𝑁) = (𝐴 /L 𝑁))
6665oveq1d 7270 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
6766eqeq2d 2749 . . . . 5 (𝑥 = 𝐴 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁))))
68 simp1 1134 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
6967, 41, 68rspcdva 3554 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7069adantr 480 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
71 oveq2 7263 . . . . 5 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
7268zcnd 12356 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7372mul01d 11104 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 · 0) = 0)
7471, 73sylan9eqr 2801 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
7574oveq1d 7270 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
76 simpr 484 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → 𝐵 = 0)
7776oveq1d 7270 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐵 /L 𝑁) = (0 /L 𝑁))
7877oveq2d 7271 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7970, 75, 783eqtr4d 2788 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
80 lgsdir 26385 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
815, 80syl3anl3 1412 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8264, 79, 81pm2.61da2ne 3032 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807  0cn0 12163  cz 12249   gcd cgcd 16129   /L clgs 26347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-pc 16466  df-lgs 26348
This theorem is referenced by:  lgsdchr  26408
  Copyright terms: Public domain W3C validator