MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdirnn0 Structured version   Visualization version   GIF version

Theorem lgsdirnn0 25521
Description: Variation on lgsdir 25509 valid for all 𝐴, 𝐵 but only for positive 𝑁. (The exact location of the failure of this law is for 𝐴 = 0, 𝐵 < 0, 𝑁 = -1 in which case (0 /L -1) = 1 but (𝐵 /L -1) = -1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
lgsdirnn0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))

Proof of Theorem lgsdirnn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6929 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 /L 𝑁) = (𝐵 /L 𝑁))
21oveq1d 6937 . . . . . . 7 (𝑥 = 𝐵 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
32eqeq2d 2787 . . . . . 6 (𝑥 = 𝐵 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁))))
4 id 22 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
5 nn0z 11752 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 lgscl 25488 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
74, 5, 6syl2anr 590 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℤ)
87zcnd 11835 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 𝑁) ∈ ℂ)
98adantr 474 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (𝑥 /L 𝑁) ∈ ℂ)
109mul01d 10575 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · 0) = 0)
11 simpr 479 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = 0)
1211oveq2d 6938 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝑥 /L 𝑁) · 0))
1310, 12, 113eqtr4rd 2824 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) = 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
14 0z 11739 . . . . . . . . . . . . . 14 0 ∈ ℤ
155adantr 474 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
16 lgsne0 25512 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
1714, 15, 16sylancr 581 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 ↔ (0 gcd 𝑁) = 1))
18 gcdcom 15641 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
1914, 15, 18sylancr 581 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = (𝑁 gcd 0))
20 nn0gcdid0 15648 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁)
2120adantr 474 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 gcd 0) = 𝑁)
2219, 21eqtrd 2813 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 gcd 𝑁) = 𝑁)
2322eqeq1d 2779 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 ↔ 𝑁 = 1))
24 lgs1 25518 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥 /L 1) = 1)
2524adantl 475 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑥 /L 1) = 1)
26 oveq2 6930 . . . . . . . . . . . . . . . 16 (𝑁 = 1 → (𝑥 /L 𝑁) = (𝑥 /L 1))
2726eqeq1d 2779 . . . . . . . . . . . . . . 15 (𝑁 = 1 → ((𝑥 /L 𝑁) = 1 ↔ (𝑥 /L 1) = 1))
2825, 27syl5ibrcom 239 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (𝑁 = 1 → (𝑥 /L 𝑁) = 1))
2923, 28sylbid 232 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 gcd 𝑁) = 1 → (𝑥 /L 𝑁) = 1))
3017, 29sylbid 232 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((0 /L 𝑁) ≠ 0 → (𝑥 /L 𝑁) = 1))
3130imp 397 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (𝑥 /L 𝑁) = 1)
3231oveq1d 6937 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = (1 · (0 /L 𝑁)))
335ad2antrr 716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → 𝑁 ∈ ℤ)
34 lgscl 25488 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 /L 𝑁) ∈ ℤ)
3514, 33, 34sylancr 581 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℤ)
3635zcnd 11835 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) ∈ ℂ)
3736mulid2d 10395 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (1 · (0 /L 𝑁)) = (0 /L 𝑁))
3832, 37eqtr2d 2814 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑥 ∈ ℤ) ∧ (0 /L 𝑁) ≠ 0) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
3913, 38pm2.61dane 3056 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
4039ralrimiva 3147 . . . . . . 7 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
41403ad2ant3 1126 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ∀𝑥 ∈ ℤ (0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)))
42 simp2 1128 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℤ)
433, 41, 42rspcdva 3516 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4443adantr 474 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
4553ad2ant3 1126 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
4614, 45, 34sylancr 581 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℤ)
4746zcnd 11835 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) ∈ ℂ)
4847adantr 474 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) ∈ ℂ)
49 lgscl 25488 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
5042, 45, 49syl2anc 579 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℤ)
5150zcnd 11835 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐵 /L 𝑁) ∈ ℂ)
5251adantr 474 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐵 /L 𝑁) ∈ ℂ)
5348, 52mulcomd 10398 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((0 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐵 /L 𝑁) · (0 /L 𝑁)))
5444, 53eqtr4d 2816 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (0 /L 𝑁) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
55 oveq1 6929 . . . . 5 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
56 zcn 11733 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
57563ad2ant2 1125 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ ℂ)
5857mul02d 10574 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 · 𝐵) = 0)
5955, 58sylan9eqr 2835 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) = 0)
6059oveq1d 6937 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
61 simpr 479 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → 𝐴 = 0)
6261oveq1d 6937 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → (𝐴 /L 𝑁) = (0 /L 𝑁))
6362oveq1d 6937 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((0 /L 𝑁) · (𝐵 /L 𝑁)))
6454, 60, 633eqtr4d 2823 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
65 oveq1 6929 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 /L 𝑁) = (𝐴 /L 𝑁))
6665oveq1d 6937 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 /L 𝑁) · (0 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
6766eqeq2d 2787 . . . . 5 (𝑥 = 𝐴 → ((0 /L 𝑁) = ((𝑥 /L 𝑁) · (0 /L 𝑁)) ↔ (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁))))
68 simp1 1127 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
6967, 41, 68rspcdva 3516 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7069adantr 474 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (0 /L 𝑁) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
71 oveq2 6930 . . . . 5 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
7268zcnd 11835 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
7372mul01d 10575 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 · 0) = 0)
7471, 73sylan9eqr 2835 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐴 · 𝐵) = 0)
7574oveq1d 6937 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = (0 /L 𝑁))
76 simpr 479 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → 𝐵 = 0)
7776oveq1d 6937 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → (𝐵 /L 𝑁) = (0 /L 𝑁))
7877oveq2d 6938 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = ((𝐴 /L 𝑁) · (0 /L 𝑁)))
7970, 75, 783eqtr4d 2823 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝐵 = 0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
80 lgsdir 25509 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
815, 80syl3anl3 1485 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
8264, 79, 81pm2.61da2ne 3057 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wral 3089  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   · cmul 10277  0cn0 11642  cz 11728   gcd cgcd 15622   /L clgs 25471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-gcd 15623  df-prm 15791  df-phi 15875  df-pc 15946  df-lgs 25472
This theorem is referenced by:  lgsdchr  25532
  Copyright terms: Public domain W3C validator