Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem42 Structured version   Visualization version   GIF version

Theorem lcfrlem42 38877
 Description: Lemma for lcfr 38878. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem42 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem42
StepHypRef Expression
1 lcfrlem38.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcfrlem38.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 38403 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lcfrlem38.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
6 eqid 2798 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
7 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
8 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
9 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
10 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
11 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
12 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
131, 5, 2, 6, 7, 8, 9, 10, 3, 11, 12lcfrlem4 38838 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑈))
14 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
151, 5, 2, 6, 7, 8, 9, 10, 3, 11, 14lcfrlem4 38838 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑈))
16 lcfrlem38.p . . . . . 6 + = (+g𝑈)
176, 16lmodcom 19673 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑈) ∧ 𝑌 ∈ (Base‘𝑈)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
184, 13, 15, 17syl3anc 1368 . . . 4 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1918adantr 484 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
203adantr 484 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2111adantr 484 . . . 4 ((𝜑𝑋 = (0g𝑈)) → 𝐺𝑄)
2214adantr 484 . . . 4 ((𝜑𝑋 = (0g𝑈)) → 𝑌𝐸)
23 eqid 2798 . . . 4 (0g𝑈) = (0g𝑈)
24 simpr 488 . . . 4 ((𝜑𝑋 = (0g𝑈)) → 𝑋 = (0g𝑈))
251, 5, 2, 16, 7, 8, 9, 20, 21, 10, 22, 23, 24lcfrlem7 38841 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑌 + 𝑋) ∈ 𝐸)
2619, 25eqeltrd 2890 . 2 ((𝜑𝑋 = (0g𝑈)) → (𝑋 + 𝑌) ∈ 𝐸)
273adantr 484 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2811adantr 484 . . 3 ((𝜑𝑌 = (0g𝑈)) → 𝐺𝑄)
2912adantr 484 . . 3 ((𝜑𝑌 = (0g𝑈)) → 𝑋𝐸)
30 simpr 488 . . 3 ((𝜑𝑌 = (0g𝑈)) → 𝑌 = (0g𝑈))
311, 5, 2, 16, 7, 8, 9, 27, 28, 10, 29, 23, 30lcfrlem7 38841 . 2 ((𝜑𝑌 = (0g𝑈)) → (𝑋 + 𝑌) ∈ 𝐸)
32 lcfrlem38.f . . 3 𝐹 = (LFnl‘𝑈)
33 lcfrlem38.c . . 3 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
343adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3511adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝐺𝑄)
36 lcfrlem38.gs . . . 4 (𝜑𝐺𝐶)
3736adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝐺𝐶)
3812adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝐸)
3914adantr 484 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝐸)
40 simprl 770 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
41 simprr 772 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
421, 5, 2, 16, 32, 7, 8, 9, 33, 10, 34, 35, 37, 38, 39, 23, 40, 41lcfrlem41 38876 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝑋 + 𝑌) ∈ 𝐸)
4326, 31, 42pm2.61da2ne 3075 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  {crab 3110   ⊆ wss 3881  ∪ ciun 4881  ‘cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  LModclmod 19627  LSubSpclss 19696  LFnlclfn 36350  LKerclk 36378  LDualcld 36416  HLchlt 36643  LHypclh 37277  DVecHcdvh 38371  ocHcoch 38640 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36246 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36269  df-lshyp 36270  df-lcv 36312  df-lfl 36351  df-lkr 36379  df-ldual 36417  df-oposet 36469  df-ol 36471  df-oml 36472  df-covers 36559  df-ats 36560  df-atl 36591  df-cvlat 36615  df-hlat 36644  df-llines 36791  df-lplanes 36792  df-lvols 36793  df-lines 36794  df-psubsp 36796  df-pmap 36797  df-padd 37089  df-lhyp 37281  df-laut 37282  df-ldil 37397  df-ltrn 37398  df-trl 37452  df-tgrp 38036  df-tendo 38048  df-edring 38050  df-dveca 38296  df-disoa 38322  df-dvech 38372  df-dib 38432  df-dic 38466  df-dih 38522  df-doch 38641  df-djh 38688 This theorem is referenced by:  lcfr  38878
 Copyright terms: Public domain W3C validator