![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem42 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 40261. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem38.p | ⊢ + = (+g‘𝑈) |
lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
Ref | Expression |
---|---|
lcfrlem42 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem38.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfrlem38.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 39786 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | lcfrlem38.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
8 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
9 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
10 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
11 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
12 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
13 | 1, 5, 2, 6, 7, 8, 9, 10, 3, 11, 12 | lcfrlem4 40221 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
14 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
15 | 1, 5, 2, 6, 7, 8, 9, 10, 3, 11, 14 | lcfrlem4 40221 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
16 | lcfrlem38.p | . . . . . 6 ⊢ + = (+g‘𝑈) | |
17 | 6, 16 | lmodcom 20467 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑈) ∧ 𝑌 ∈ (Base‘𝑈)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
18 | 4, 13, 15, 17 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
19 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
20 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝐺 ∈ 𝑄) |
22 | 14 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝑌 ∈ 𝐸) |
23 | eqid 2731 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
24 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝑋 = (0g‘𝑈)) | |
25 | 1, 5, 2, 16, 7, 8, 9, 20, 21, 10, 22, 23, 24 | lcfrlem7 40224 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑌 + 𝑋) ∈ 𝐸) |
26 | 19, 25 | eqeltrd 2832 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝑋 + 𝑌) ∈ 𝐸) |
27 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → 𝐺 ∈ 𝑄) |
29 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → 𝑋 ∈ 𝐸) |
30 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → 𝑌 = (0g‘𝑈)) | |
31 | 1, 5, 2, 16, 7, 8, 9, 27, 28, 10, 29, 23, 30 | lcfrlem7 40224 | . 2 ⊢ ((𝜑 ∧ 𝑌 = (0g‘𝑈)) → (𝑋 + 𝑌) ∈ 𝐸) |
32 | lcfrlem38.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
33 | lcfrlem38.c | . . 3 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
34 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
35 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝐺 ∈ 𝑄) |
36 | lcfrlem38.gs | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
37 | 36 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝐺 ⊆ 𝐶) |
38 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑋 ∈ 𝐸) |
39 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑌 ∈ 𝐸) |
40 | simprl 769 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑋 ≠ (0g‘𝑈)) | |
41 | simprr 771 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → 𝑌 ≠ (0g‘𝑈)) | |
42 | 1, 5, 2, 16, 32, 7, 8, 9, 33, 10, 34, 35, 37, 38, 39, 23, 40, 41 | lcfrlem41 40259 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ 𝑌 ≠ (0g‘𝑈))) → (𝑋 + 𝑌) ∈ 𝐸) |
43 | 26, 31, 42 | pm2.61da2ne 3029 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 {crab 3431 ⊆ wss 3944 ∪ ciun 4990 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 0gc0g 17367 LModclmod 20420 LSubSpclss 20491 LFnlclfn 37732 LKerclk 37760 LDualcld 37798 HLchlt 38025 LHypclh 38660 DVecHcdvh 39754 ocHcoch 40023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-riotaBAD 37628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-undef 8240 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17369 df-mre 17512 df-mrc 17513 df-acs 17515 df-proset 18230 df-poset 18248 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-subg 18975 df-cntz 19147 df-oppg 19174 df-lsm 19468 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-dvr 20165 df-drng 20267 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lvec 20663 df-lsatoms 37651 df-lshyp 37652 df-lcv 37694 df-lfl 37733 df-lkr 37761 df-ldual 37799 df-oposet 37851 df-ol 37853 df-oml 37854 df-covers 37941 df-ats 37942 df-atl 37973 df-cvlat 37997 df-hlat 38026 df-llines 38174 df-lplanes 38175 df-lvols 38176 df-lines 38177 df-psubsp 38179 df-pmap 38180 df-padd 38472 df-lhyp 38664 df-laut 38665 df-ldil 38780 df-ltrn 38781 df-trl 38835 df-tgrp 39419 df-tendo 39431 df-edring 39433 df-dveca 39679 df-disoa 39705 df-dvech 39755 df-dib 39815 df-dic 39849 df-dih 39905 df-doch 40024 df-djh 40071 |
This theorem is referenced by: lcfr 40261 |
Copyright terms: Public domain | W3C validator |