Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl9a | Structured version Visualization version GIF version |
Description: Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.) |
Ref | Expression |
---|---|
lcfl9a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl9a.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl9a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl9a.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl9a.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl9a.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl9a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl9a.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfl9a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lcfl9a.s | ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
Ref | Expression |
---|---|
lcfl9a | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl9a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfl9a.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfl9a.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfl9a.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfl9a.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dochoc1 39302 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
8 | lcfl9a.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑈) | |
9 | lcfl9a.l | . . . . . . . 8 ⊢ 𝐿 = (LKer‘𝑈) | |
10 | 1, 2, 5 | dvhlmod 39051 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | lcfl9a.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
12 | 4, 8, 9, 10, 11 | lkrssv 37037 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐿‘𝐺) ⊆ 𝑉) |
14 | sneq 4568 | . . . . . . . . 9 ⊢ (𝑋 = (0g‘𝑈) → {𝑋} = {(0g‘𝑈)}) | |
15 | 14 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑋 = (0g‘𝑈) → ( ⊥ ‘{𝑋}) = ( ⊥ ‘{(0g‘𝑈)})) |
16 | eqid 2738 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
17 | 1, 2, 3, 4, 16 | doch0 39299 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{(0g‘𝑈)}) = 𝑉) |
18 | 5, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘{(0g‘𝑈)}) = 𝑉) |
19 | 15, 18 | sylan9eqr 2801 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘{𝑋}) = 𝑉) |
20 | lcfl9a.s | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) | |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
22 | 19, 21 | eqsstrrd 3956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝑉 ⊆ (𝐿‘𝐺)) |
23 | 13, 22 | eqssd 3934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐿‘𝐺) = 𝑉) |
24 | 23 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) |
25 | 24 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
26 | 7, 25, 23 | 3eqtr4d 2788 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
27 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
28 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
29 | 28 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) |
30 | 29 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
31 | 27, 30, 28 | 3eqtr4d 2788 | . 2 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
32 | lcfl9a.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
33 | 32 | snssd 4739 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
34 | eqid 2738 | . . . . . . 7 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
35 | 1, 34, 2, 4, 3 | dochcl 39294 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
36 | 5, 33, 35 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
37 | 1, 34, 3 | dochoc 39308 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
38 | 5, 36, 37 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
39 | 38 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
40 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
41 | eqid 2738 | . . . . . . 7 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
42 | 1, 2, 5 | dvhlvec 39050 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
43 | 42 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑈 ∈ LVec) |
44 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
45 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ∈ 𝑉) |
46 | simprl 767 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ≠ (0g‘𝑈)) | |
47 | eldifsn 4717 | . . . . . . . . 9 ⊢ (𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) | |
48 | 45, 46, 47 | sylanbrc 582 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
49 | 1, 3, 2, 4, 16, 41, 44, 48 | dochsnshp 39394 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) ∈ (LSHyp‘𝑈)) |
50 | simprr 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐿‘𝐺) ≠ 𝑉) | |
51 | 4, 41, 8, 9, 42, 11 | lkrshp4 37049 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 ↔ (𝐿‘𝐺) ∈ (LSHyp‘𝑈))) |
52 | 51 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ((𝐿‘𝐺) ≠ 𝑉 ↔ (𝐿‘𝐺) ∈ (LSHyp‘𝑈))) |
53 | 50, 52 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) |
54 | 41, 43, 49, 53 | lshpcmp 36929 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺) ↔ ( ⊥ ‘{𝑋}) = (𝐿‘𝐺))) |
55 | 40, 54 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) = (𝐿‘𝐺)) |
56 | 55 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘{𝑋})) = ( ⊥ ‘(𝐿‘𝐺))) |
57 | 56 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
58 | 39, 57, 55 | 3eqtr3d 2786 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
59 | 26, 31, 58 | pm2.61da2ne 3032 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ran crn 5581 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LVecclvec 20279 LSHypclsh 36916 LFnlclfn 36998 LKerclk 37026 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 DIsoHcdih 39169 ocHcoch 39288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lfl 36999 df-lkr 37027 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 |
This theorem is referenced by: mapdsn 39582 |
Copyright terms: Public domain | W3C validator |