![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl9a | Structured version Visualization version GIF version |
Description: Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.) |
Ref | Expression |
---|---|
lcfl9a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl9a.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl9a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl9a.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl9a.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl9a.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl9a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl9a.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfl9a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lcfl9a.s | ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
Ref | Expression |
---|---|
lcfl9a | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl9a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfl9a.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfl9a.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfl9a.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfl9a.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dochoc1 41318 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
8 | lcfl9a.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑈) | |
9 | lcfl9a.l | . . . . . . . 8 ⊢ 𝐿 = (LKer‘𝑈) | |
10 | 1, 2, 5 | dvhlmod 41067 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | lcfl9a.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
12 | 4, 8, 9, 10, 11 | lkrssv 39052 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐿‘𝐺) ⊆ 𝑉) |
14 | sneq 4658 | . . . . . . . . 9 ⊢ (𝑋 = (0g‘𝑈) → {𝑋} = {(0g‘𝑈)}) | |
15 | 14 | fveq2d 6924 | . . . . . . . 8 ⊢ (𝑋 = (0g‘𝑈) → ( ⊥ ‘{𝑋}) = ( ⊥ ‘{(0g‘𝑈)})) |
16 | eqid 2740 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
17 | 1, 2, 3, 4, 16 | doch0 41315 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{(0g‘𝑈)}) = 𝑉) |
18 | 5, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘{(0g‘𝑈)}) = 𝑉) |
19 | 15, 18 | sylan9eqr 2802 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘{𝑋}) = 𝑉) |
20 | lcfl9a.s | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) | |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
22 | 19, 21 | eqsstrrd 4048 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝑉 ⊆ (𝐿‘𝐺)) |
23 | 13, 22 | eqssd 4026 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐿‘𝐺) = 𝑉) |
24 | 23 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) |
25 | 24 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
26 | 7, 25, 23 | 3eqtr4d 2790 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
27 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
28 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
29 | 28 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) |
30 | 29 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
31 | 27, 30, 28 | 3eqtr4d 2790 | . 2 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
32 | lcfl9a.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
33 | 32 | snssd 4834 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
34 | eqid 2740 | . . . . . . 7 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
35 | 1, 34, 2, 4, 3 | dochcl 41310 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
36 | 5, 33, 35 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
37 | 1, 34, 3 | dochoc 41324 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
38 | 5, 36, 37 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
39 | 38 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
40 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
41 | eqid 2740 | . . . . . . 7 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
42 | 1, 2, 5 | dvhlvec 41066 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
43 | 42 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑈 ∈ LVec) |
44 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
45 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ∈ 𝑉) |
46 | simprl 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ≠ (0g‘𝑈)) | |
47 | eldifsn 4811 | . . . . . . . . 9 ⊢ (𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) | |
48 | 45, 46, 47 | sylanbrc 582 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
49 | 1, 3, 2, 4, 16, 41, 44, 48 | dochsnshp 41410 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) ∈ (LSHyp‘𝑈)) |
50 | simprr 772 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐿‘𝐺) ≠ 𝑉) | |
51 | 4, 41, 8, 9, 42, 11 | lkrshp4 39064 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 ↔ (𝐿‘𝐺) ∈ (LSHyp‘𝑈))) |
52 | 51 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ((𝐿‘𝐺) ≠ 𝑉 ↔ (𝐿‘𝐺) ∈ (LSHyp‘𝑈))) |
53 | 50, 52 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) |
54 | 41, 43, 49, 53 | lshpcmp 38944 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺) ↔ ( ⊥ ‘{𝑋}) = (𝐿‘𝐺))) |
55 | 40, 54 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) = (𝐿‘𝐺)) |
56 | 55 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘{𝑋})) = ( ⊥ ‘(𝐿‘𝐺))) |
57 | 56 | fveq2d 6924 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
58 | 39, 57, 55 | 3eqtr3d 2788 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
59 | 26, 31, 58 | pm2.61da2ne 3036 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ran crn 5701 ‘cfv 6573 Basecbs 17258 0gc0g 17499 LVecclvec 21124 LSHypclsh 38931 LFnlclfn 39013 LKerclk 39041 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 DIsoHcdih 41185 ocHcoch 41304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lfl 39014 df-lkr 39042 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 |
This theorem is referenced by: mapdsn 41598 |
Copyright terms: Public domain | W3C validator |