![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl9a | Structured version Visualization version GIF version |
Description: Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.) |
Ref | Expression |
---|---|
lcfl9a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfl9a.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfl9a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfl9a.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfl9a.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfl9a.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfl9a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfl9a.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfl9a.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lcfl9a.s | ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
Ref | Expression |
---|---|
lcfl9a | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfl9a.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfl9a.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfl9a.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfl9a.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfl9a.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 1, 2, 3, 4, 5 | dochoc1 41344 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
8 | lcfl9a.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑈) | |
9 | lcfl9a.l | . . . . . . . 8 ⊢ 𝐿 = (LKer‘𝑈) | |
10 | 1, 2, 5 | dvhlmod 41093 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | lcfl9a.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
12 | 4, 8, 9, 10, 11 | lkrssv 39078 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐿‘𝐺) ⊆ 𝑉) |
14 | sneq 4641 | . . . . . . . . 9 ⊢ (𝑋 = (0g‘𝑈) → {𝑋} = {(0g‘𝑈)}) | |
15 | 14 | fveq2d 6911 | . . . . . . . 8 ⊢ (𝑋 = (0g‘𝑈) → ( ⊥ ‘{𝑋}) = ( ⊥ ‘{(0g‘𝑈)})) |
16 | eqid 2735 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
17 | 1, 2, 3, 4, 16 | doch0 41341 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{(0g‘𝑈)}) = 𝑉) |
18 | 5, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘{(0g‘𝑈)}) = 𝑉) |
19 | 15, 18 | sylan9eqr 2797 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘{𝑋}) = 𝑉) |
20 | lcfl9a.s | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) | |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
22 | 19, 21 | eqsstrrd 4035 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → 𝑉 ⊆ (𝐿‘𝐺)) |
23 | 13, 22 | eqssd 4013 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → (𝐿‘𝐺) = 𝑉) |
24 | 23 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) |
25 | 24 | fveq2d 6911 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
26 | 7, 25, 23 | 3eqtr4d 2785 | . 2 ⊢ ((𝜑 ∧ 𝑋 = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
27 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
28 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) | |
29 | 28 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘𝑉)) |
30 | 29 | fveq2d 6911 | . . 3 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) |
31 | 27, 30, 28 | 3eqtr4d 2785 | . 2 ⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
32 | lcfl9a.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
33 | 32 | snssd 4814 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
34 | eqid 2735 | . . . . . . 7 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
35 | 1, 34, 2, 4, 3 | dochcl 41336 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
36 | 5, 33, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
37 | 1, 34, 3 | dochoc 41350 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
38 | 5, 36, 37 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
39 | 38 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
40 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺)) |
41 | eqid 2735 | . . . . . . 7 ⊢ (LSHyp‘𝑈) = (LSHyp‘𝑈) | |
42 | 1, 2, 5 | dvhlvec 41092 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
43 | 42 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑈 ∈ LVec) |
44 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
45 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ∈ 𝑉) |
46 | simprl 771 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ≠ (0g‘𝑈)) | |
47 | eldifsn 4791 | . . . . . . . . 9 ⊢ (𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ (0g‘𝑈))) | |
48 | 45, 46, 47 | sylanbrc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → 𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
49 | 1, 3, 2, 4, 16, 41, 44, 48 | dochsnshp 41436 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) ∈ (LSHyp‘𝑈)) |
50 | simprr 773 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐿‘𝐺) ≠ 𝑉) | |
51 | 4, 41, 8, 9, 42, 11 | lkrshp4 39090 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐿‘𝐺) ≠ 𝑉 ↔ (𝐿‘𝐺) ∈ (LSHyp‘𝑈))) |
52 | 51 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ((𝐿‘𝐺) ≠ 𝑉 ↔ (𝐿‘𝐺) ∈ (LSHyp‘𝑈))) |
53 | 50, 52 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) |
54 | 41, 43, 49, 53 | lshpcmp 38970 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → (( ⊥ ‘{𝑋}) ⊆ (𝐿‘𝐺) ↔ ( ⊥ ‘{𝑋}) = (𝐿‘𝐺))) |
55 | 40, 54 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘{𝑋}) = (𝐿‘𝐺)) |
56 | 55 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘{𝑋})) = ( ⊥ ‘(𝐿‘𝐺))) |
57 | 56 | fveq2d 6911 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺)))) |
58 | 39, 57, 55 | 3eqtr3d 2783 | . 2 ⊢ ((𝜑 ∧ (𝑋 ≠ (0g‘𝑈) ∧ (𝐿‘𝐺) ≠ 𝑉)) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
59 | 26, 31, 58 | pm2.61da2ne 3028 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 ran crn 5690 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LVecclvec 21119 LSHypclsh 38957 LFnlclfn 39039 LKerclk 39067 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 DIsoHcdih 41211 ocHcoch 41330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lsatoms 38958 df-lshyp 38959 df-lfl 39040 df-lkr 39068 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 |
This theorem is referenced by: mapdsn 41624 |
Copyright terms: Public domain | W3C validator |