MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Structured version   Visualization version   GIF version

Theorem chordthmlem3 26720
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 26719 and the Pythagorean theorem (pythag 26703) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A (𝜑𝐴 ∈ ℂ)
chordthmlem3.B (𝜑𝐵 ∈ ℂ)
chordthmlem3.Q (𝜑𝑄 ∈ ℂ)
chordthmlem3.X (𝜑𝑋 ∈ ℝ)
chordthmlem3.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem3.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem3.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
2 chordthmlem3.M . . . . . . . . . 10 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
3 chordthmlem3.A . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4 chordthmlem3.B . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
53, 4addcld 11169 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
65halfcld 12403 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
72, 6eqeltrd 2828 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
81, 7subcld 11509 . . . . . . . 8 (𝜑 → (𝑄𝑀) ∈ ℂ)
98abscld 15381 . . . . . . 7 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℝ)
109recnd 11178 . . . . . 6 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℂ)
1110sqcld 14085 . . . . 5 (𝜑 → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1211adantr 480 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1312addridd 11350 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + 0) = ((abs‘(𝑄𝑀))↑2))
14 chordthmlem3.P . . . . . . . . 9 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 chordthmlem3.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
1615recnd 11178 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
1716, 3mulcld 11170 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
18 1cnd 11145 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
1918, 16subcld 11509 . . . . . . . . . . 11 (𝜑 → (1 − 𝑋) ∈ ℂ)
2019, 4mulcld 11170 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2117, 20addcld 11169 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2214, 21eqeltrd 2828 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2322adantr 480 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 ∈ ℂ)
24 simpr 484 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 = 𝑀)
2523, 24subeq0bd 11580 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑃𝑀) = 0)
2625abs00bd 15233 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑀)) = 0)
2726sq0id 14135 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑀))↑2) = 0)
2827oveq2d 7385 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (((abs‘(𝑄𝑀))↑2) + 0))
291adantr 480 . . . . . 6 ((𝜑𝑃 = 𝑀) → 𝑄 ∈ ℂ)
3029, 23abssubd 15398 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑃𝑄)))
3124oveq2d 7385 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑄𝑃) = (𝑄𝑀))
3231fveq2d 6844 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑄𝑀)))
3330, 32eqtr3d 2766 . . . 4 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑄𝑀)))
3433oveq1d 7384 . . 3 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑄𝑀))↑2))
3513, 28, 343eqtr4rd 2775 . 2 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
3622, 7subcld 11509 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℂ)
3736abscld 15381 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℝ)
3837recnd 11178 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℂ)
3938sqcld 14085 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4039adantr 480 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4140addlidd 11351 . . 3 ((𝜑𝑄 = 𝑀) → (0 + ((abs‘(𝑃𝑀))↑2)) = ((abs‘(𝑃𝑀))↑2))
421adantr 480 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 ∈ ℂ)
43 simpr 484 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 = 𝑀)
4442, 43subeq0bd 11580 . . . . . 6 ((𝜑𝑄 = 𝑀) → (𝑄𝑀) = 0)
4544abs00bd 15233 . . . . 5 ((𝜑𝑄 = 𝑀) → (abs‘(𝑄𝑀)) = 0)
4645sq0id 14135 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑄𝑀))↑2) = 0)
4746oveq1d 7384 . . 3 ((𝜑𝑄 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (0 + ((abs‘(𝑃𝑀))↑2)))
4843oveq2d 7385 . . . . 5 ((𝜑𝑄 = 𝑀) → (𝑃𝑄) = (𝑃𝑀))
4948fveq2d 6844 . . . 4 ((𝜑𝑄 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑀)))
5049oveq1d 7384 . . 3 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑃𝑀))↑2))
5141, 47, 503eqtr4rd 2775 . 2 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
5222adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 ∈ ℂ)
531adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄 ∈ ℂ)
547adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 ∈ ℂ)
55 simprl 770 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃𝑀)
56 simprr 772 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄𝑀)
57 eqid 2729 . . . 4 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
583adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐴 ∈ ℂ)
594adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐵 ∈ ℂ)
6015adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑋 ∈ ℝ)
612adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 = ((𝐴 + 𝐵) / 2))
6214adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
63 chordthmlem3.ABequidistQ . . . . 5 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6463adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6557, 58, 59, 53, 60, 61, 62, 64, 55, 56chordthmlem2 26719 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
66 eqid 2729 . . . 4 (abs‘(𝑄𝑀)) = (abs‘(𝑄𝑀))
67 eqid 2729 . . . 4 (abs‘(𝑃𝑀)) = (abs‘(𝑃𝑀))
68 eqid 2729 . . . 4 (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑄))
69 eqid 2729 . . . 4 ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) = ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀))
7057, 66, 67, 68, 69pythag 26703 . . 3 (((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑃𝑀𝑄𝑀) ∧ ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)}) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7152, 53, 54, 55, 56, 65, 70syl321anc 1394 . 2 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7235, 51, 71pm2.61da2ne 3013 1 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  cmpo 7371  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  cexp 14002  cim 15040  abscabs 15176  πcpi 16008  logclog 26439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441
This theorem is referenced by:  chordthmlem5  26722
  Copyright terms: Public domain W3C validator