MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Structured version   Visualization version   GIF version

Theorem chordthmlem3 25889
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 25888 and the Pythagorean theorem (pythag 25872) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A (𝜑𝐴 ∈ ℂ)
chordthmlem3.B (𝜑𝐵 ∈ ℂ)
chordthmlem3.Q (𝜑𝑄 ∈ ℂ)
chordthmlem3.X (𝜑𝑋 ∈ ℝ)
chordthmlem3.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem3.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem3.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
2 chordthmlem3.M . . . . . . . . . 10 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
3 chordthmlem3.A . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4 chordthmlem3.B . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
53, 4addcld 10925 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
65halfcld 12148 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
72, 6eqeltrd 2839 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
81, 7subcld 11262 . . . . . . . 8 (𝜑 → (𝑄𝑀) ∈ ℂ)
98abscld 15076 . . . . . . 7 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℝ)
109recnd 10934 . . . . . 6 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℂ)
1110sqcld 13790 . . . . 5 (𝜑 → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1211adantr 480 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1312addid1d 11105 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + 0) = ((abs‘(𝑄𝑀))↑2))
14 chordthmlem3.P . . . . . . . . 9 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 chordthmlem3.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
1615recnd 10934 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
1716, 3mulcld 10926 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
18 1cnd 10901 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
1918, 16subcld 11262 . . . . . . . . . . 11 (𝜑 → (1 − 𝑋) ∈ ℂ)
2019, 4mulcld 10926 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2117, 20addcld 10925 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2214, 21eqeltrd 2839 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2322adantr 480 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 ∈ ℂ)
24 simpr 484 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 = 𝑀)
2523, 24subeq0bd 11331 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑃𝑀) = 0)
2625abs00bd 14931 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑀)) = 0)
2726sq0id 13839 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑀))↑2) = 0)
2827oveq2d 7271 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (((abs‘(𝑄𝑀))↑2) + 0))
291adantr 480 . . . . . 6 ((𝜑𝑃 = 𝑀) → 𝑄 ∈ ℂ)
3029, 23abssubd 15093 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑃𝑄)))
3124oveq2d 7271 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑄𝑃) = (𝑄𝑀))
3231fveq2d 6760 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑄𝑀)))
3330, 32eqtr3d 2780 . . . 4 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑄𝑀)))
3433oveq1d 7270 . . 3 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑄𝑀))↑2))
3513, 28, 343eqtr4rd 2789 . 2 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
3622, 7subcld 11262 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℂ)
3736abscld 15076 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℝ)
3837recnd 10934 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℂ)
3938sqcld 13790 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4039adantr 480 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4140addid2d 11106 . . 3 ((𝜑𝑄 = 𝑀) → (0 + ((abs‘(𝑃𝑀))↑2)) = ((abs‘(𝑃𝑀))↑2))
421adantr 480 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 ∈ ℂ)
43 simpr 484 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 = 𝑀)
4442, 43subeq0bd 11331 . . . . . 6 ((𝜑𝑄 = 𝑀) → (𝑄𝑀) = 0)
4544abs00bd 14931 . . . . 5 ((𝜑𝑄 = 𝑀) → (abs‘(𝑄𝑀)) = 0)
4645sq0id 13839 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑄𝑀))↑2) = 0)
4746oveq1d 7270 . . 3 ((𝜑𝑄 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (0 + ((abs‘(𝑃𝑀))↑2)))
4843oveq2d 7271 . . . . 5 ((𝜑𝑄 = 𝑀) → (𝑃𝑄) = (𝑃𝑀))
4948fveq2d 6760 . . . 4 ((𝜑𝑄 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑀)))
5049oveq1d 7270 . . 3 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑃𝑀))↑2))
5141, 47, 503eqtr4rd 2789 . 2 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
5222adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 ∈ ℂ)
531adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄 ∈ ℂ)
547adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 ∈ ℂ)
55 simprl 767 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃𝑀)
56 simprr 769 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄𝑀)
57 eqid 2738 . . . 4 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
583adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐴 ∈ ℂ)
594adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐵 ∈ ℂ)
6015adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑋 ∈ ℝ)
612adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 = ((𝐴 + 𝐵) / 2))
6214adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
63 chordthmlem3.ABequidistQ . . . . 5 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6463adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6557, 58, 59, 53, 60, 61, 62, 64, 55, 56chordthmlem2 25888 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
66 eqid 2738 . . . 4 (abs‘(𝑄𝑀)) = (abs‘(𝑄𝑀))
67 eqid 2738 . . . 4 (abs‘(𝑃𝑀)) = (abs‘(𝑃𝑀))
68 eqid 2738 . . . 4 (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑄))
69 eqid 2738 . . . 4 ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) = ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀))
7057, 66, 67, 68, 69pythag 25872 . . 3 (((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑃𝑀𝑄𝑀) ∧ ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)}) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7152, 53, 54, 55, 56, 65, 70syl321anc 1390 . 2 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7235, 51, 71pm2.61da2ne 3032 1 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  cmpo 7257  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cexp 13710  cim 14737  abscabs 14873  πcpi 15704  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  chordthmlem5  25891
  Copyright terms: Public domain W3C validator