MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem3 Structured version   Visualization version   GIF version

Theorem chordthmlem3 26801
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 26800 and the Pythagorean theorem (pythag 26784) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem3.A (𝜑𝐴 ∈ ℂ)
chordthmlem3.B (𝜑𝐵 ∈ ℂ)
chordthmlem3.Q (𝜑𝑄 ∈ ℂ)
chordthmlem3.X (𝜑𝑋 ∈ ℝ)
chordthmlem3.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem3.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem3.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
Assertion
Ref Expression
chordthmlem3 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthmlem3.Q . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
2 chordthmlem3.M . . . . . . . . . 10 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
3 chordthmlem3.A . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4 chordthmlem3.B . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℂ)
53, 4addcld 11259 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
65halfcld 12491 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
72, 6eqeltrd 2835 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
81, 7subcld 11599 . . . . . . . 8 (𝜑 → (𝑄𝑀) ∈ ℂ)
98abscld 15460 . . . . . . 7 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℝ)
109recnd 11268 . . . . . 6 (𝜑 → (abs‘(𝑄𝑀)) ∈ ℂ)
1110sqcld 14167 . . . . 5 (𝜑 → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1211adantr 480 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑄𝑀))↑2) ∈ ℂ)
1312addridd 11440 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + 0) = ((abs‘(𝑄𝑀))↑2))
14 chordthmlem3.P . . . . . . . . 9 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
15 chordthmlem3.X . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
1615recnd 11268 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
1716, 3mulcld 11260 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
18 1cnd 11235 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
1918, 16subcld 11599 . . . . . . . . . . 11 (𝜑 → (1 − 𝑋) ∈ ℂ)
2019, 4mulcld 11260 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2117, 20addcld 11259 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2214, 21eqeltrd 2835 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2322adantr 480 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 ∈ ℂ)
24 simpr 484 . . . . . . 7 ((𝜑𝑃 = 𝑀) → 𝑃 = 𝑀)
2523, 24subeq0bd 11668 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑃𝑀) = 0)
2625abs00bd 15315 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑀)) = 0)
2726sq0id 14217 . . . 4 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑀))↑2) = 0)
2827oveq2d 7426 . . 3 ((𝜑𝑃 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (((abs‘(𝑄𝑀))↑2) + 0))
291adantr 480 . . . . . 6 ((𝜑𝑃 = 𝑀) → 𝑄 ∈ ℂ)
3029, 23abssubd 15477 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑃𝑄)))
3124oveq2d 7426 . . . . . 6 ((𝜑𝑃 = 𝑀) → (𝑄𝑃) = (𝑄𝑀))
3231fveq2d 6885 . . . . 5 ((𝜑𝑃 = 𝑀) → (abs‘(𝑄𝑃)) = (abs‘(𝑄𝑀)))
3330, 32eqtr3d 2773 . . . 4 ((𝜑𝑃 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑄𝑀)))
3433oveq1d 7425 . . 3 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑄𝑀))↑2))
3513, 28, 343eqtr4rd 2782 . 2 ((𝜑𝑃 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
3622, 7subcld 11599 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℂ)
3736abscld 15460 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℝ)
3837recnd 11268 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) ∈ ℂ)
3938sqcld 14167 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4039adantr 480 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑀))↑2) ∈ ℂ)
4140addlidd 11441 . . 3 ((𝜑𝑄 = 𝑀) → (0 + ((abs‘(𝑃𝑀))↑2)) = ((abs‘(𝑃𝑀))↑2))
421adantr 480 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 ∈ ℂ)
43 simpr 484 . . . . . . 7 ((𝜑𝑄 = 𝑀) → 𝑄 = 𝑀)
4442, 43subeq0bd 11668 . . . . . 6 ((𝜑𝑄 = 𝑀) → (𝑄𝑀) = 0)
4544abs00bd 15315 . . . . 5 ((𝜑𝑄 = 𝑀) → (abs‘(𝑄𝑀)) = 0)
4645sq0id 14217 . . . 4 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑄𝑀))↑2) = 0)
4746oveq1d 7425 . . 3 ((𝜑𝑄 = 𝑀) → (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)) = (0 + ((abs‘(𝑃𝑀))↑2)))
4843oveq2d 7426 . . . . 5 ((𝜑𝑄 = 𝑀) → (𝑃𝑄) = (𝑃𝑀))
4948fveq2d 6885 . . . 4 ((𝜑𝑄 = 𝑀) → (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑀)))
5049oveq1d 7425 . . 3 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = ((abs‘(𝑃𝑀))↑2))
5141, 47, 503eqtr4rd 2782 . 2 ((𝜑𝑄 = 𝑀) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
5222adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 ∈ ℂ)
531adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄 ∈ ℂ)
547adantr 480 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 ∈ ℂ)
55 simprl 770 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃𝑀)
56 simprr 772 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑄𝑀)
57 eqid 2736 . . . 4 (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
583adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐴 ∈ ℂ)
594adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝐵 ∈ ℂ)
6015adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑋 ∈ ℝ)
612adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑀 = ((𝐴 + 𝐵) / 2))
6214adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
63 chordthmlem3.ABequidistQ . . . . 5 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6463adantr 480 . . . 4 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
6557, 58, 59, 53, 60, 61, 62, 64, 55, 56chordthmlem2 26800 . . 3 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
66 eqid 2736 . . . 4 (abs‘(𝑄𝑀)) = (abs‘(𝑄𝑀))
67 eqid 2736 . . . 4 (abs‘(𝑃𝑀)) = (abs‘(𝑃𝑀))
68 eqid 2736 . . . 4 (abs‘(𝑃𝑄)) = (abs‘(𝑃𝑄))
69 eqid 2736 . . . 4 ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) = ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀))
7057, 66, 67, 68, 69pythag 26784 . . 3 (((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑃𝑀𝑄𝑀) ∧ ((𝑄𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃𝑀)) ∈ {(π / 2), -(π / 2)}) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7152, 53, 54, 55, 56, 65, 70syl321anc 1394 . 2 ((𝜑 ∧ (𝑃𝑀𝑄𝑀)) → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
7235, 51, 71pm2.61da2ne 3021 1 (𝜑 → ((abs‘(𝑃𝑄))↑2) = (((abs‘(𝑄𝑀))↑2) + ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  cdif 3928  {csn 4606  {cpr 4608  cfv 6536  (class class class)co 7410  cmpo 7412  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  cexp 14084  cim 15122  abscabs 15258  πcpi 16087  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  chordthmlem5  26803
  Copyright terms: Public domain W3C validator