Step | Hyp | Ref
| Expression |
1 | | chordthmlem3.Q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℂ) |
2 | | chordthmlem3.M |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
3 | | chordthmlem3.A |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | | chordthmlem3.B |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 3, 4 | addcld 10994 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
6 | 5 | halfcld 12218 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
7 | 2, 6 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) |
8 | 1, 7 | subcld 11332 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
9 | 8 | abscld 15148 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝑄 − 𝑀)) ∈ ℝ) |
10 | 9 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝑄 − 𝑀)) ∈ ℂ) |
11 | 10 | sqcld 13862 |
. . . . 5
⊢ (𝜑 → ((abs‘(𝑄 − 𝑀))↑2) ∈ ℂ) |
12 | 11 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → ((abs‘(𝑄 − 𝑀))↑2) ∈ ℂ) |
13 | 12 | addid1d 11175 |
. . 3
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (((abs‘(𝑄 − 𝑀))↑2) + 0) = ((abs‘(𝑄 − 𝑀))↑2)) |
14 | | chordthmlem3.P |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
15 | | chordthmlem3.X |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
16 | 15 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ℂ) |
17 | 16, 3 | mulcld 10995 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
18 | | 1cnd 10970 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
19 | 18, 16 | subcld 11332 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 − 𝑋) ∈
ℂ) |
20 | 19, 4 | mulcld 10995 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
21 | 17, 20 | addcld 10994 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
22 | 14, 21 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℂ) |
23 | 22 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → 𝑃 ∈ ℂ) |
24 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → 𝑃 = 𝑀) |
25 | 23, 24 | subeq0bd 11401 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (𝑃 − 𝑀) = 0) |
26 | 25 | abs00bd 15003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (abs‘(𝑃 − 𝑀)) = 0) |
27 | 26 | sq0id 13911 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → ((abs‘(𝑃 − 𝑀))↑2) = 0) |
28 | 27 | oveq2d 7291 |
. . 3
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2)) = (((abs‘(𝑄 − 𝑀))↑2) + 0)) |
29 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → 𝑄 ∈ ℂ) |
30 | 29, 23 | abssubd 15165 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (abs‘(𝑄 − 𝑃)) = (abs‘(𝑃 − 𝑄))) |
31 | 24 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (𝑄 − 𝑃) = (𝑄 − 𝑀)) |
32 | 31 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (abs‘(𝑄 − 𝑃)) = (abs‘(𝑄 − 𝑀))) |
33 | 30, 32 | eqtr3d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → (abs‘(𝑃 − 𝑄)) = (abs‘(𝑄 − 𝑀))) |
34 | 33 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → ((abs‘(𝑃 − 𝑄))↑2) = ((abs‘(𝑄 − 𝑀))↑2)) |
35 | 13, 28, 34 | 3eqtr4rd 2789 |
. 2
⊢ ((𝜑 ∧ 𝑃 = 𝑀) → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2))) |
36 | 22, 7 | subcld 11332 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
37 | 36 | abscld 15148 |
. . . . . . 7
⊢ (𝜑 → (abs‘(𝑃 − 𝑀)) ∈ ℝ) |
38 | 37 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝑃 − 𝑀)) ∈ ℂ) |
39 | 38 | sqcld 13862 |
. . . . 5
⊢ (𝜑 → ((abs‘(𝑃 − 𝑀))↑2) ∈ ℂ) |
40 | 39 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → ((abs‘(𝑃 − 𝑀))↑2) ∈ ℂ) |
41 | 40 | addid2d 11176 |
. . 3
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → (0 + ((abs‘(𝑃 − 𝑀))↑2)) = ((abs‘(𝑃 − 𝑀))↑2)) |
42 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → 𝑄 ∈ ℂ) |
43 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → 𝑄 = 𝑀) |
44 | 42, 43 | subeq0bd 11401 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → (𝑄 − 𝑀) = 0) |
45 | 44 | abs00bd 15003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → (abs‘(𝑄 − 𝑀)) = 0) |
46 | 45 | sq0id 13911 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → ((abs‘(𝑄 − 𝑀))↑2) = 0) |
47 | 46 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2)) = (0 + ((abs‘(𝑃 − 𝑀))↑2))) |
48 | 43 | oveq2d 7291 |
. . . . 5
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → (𝑃 − 𝑄) = (𝑃 − 𝑀)) |
49 | 48 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → (abs‘(𝑃 − 𝑄)) = (abs‘(𝑃 − 𝑀))) |
50 | 49 | oveq1d 7290 |
. . 3
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → ((abs‘(𝑃 − 𝑄))↑2) = ((abs‘(𝑃 − 𝑀))↑2)) |
51 | 41, 47, 50 | 3eqtr4rd 2789 |
. 2
⊢ ((𝜑 ∧ 𝑄 = 𝑀) → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2))) |
52 | 22 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑃 ∈ ℂ) |
53 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑄 ∈ ℂ) |
54 | 7 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑀 ∈ ℂ) |
55 | | simprl 768 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑃 ≠ 𝑀) |
56 | | simprr 770 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑄 ≠ 𝑀) |
57 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ (ℂ ∖ {0}),
𝑦 ∈ (ℂ ∖
{0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
58 | 3 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝐴 ∈ ℂ) |
59 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝐵 ∈ ℂ) |
60 | 15 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑋 ∈ ℝ) |
61 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑀 = ((𝐴 + 𝐵) / 2)) |
62 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
63 | | chordthmlem3.ABequidistQ |
. . . . 5
⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
64 | 63 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
65 | 57, 58, 59, 53, 60, 61, 62, 64, 55, 56 | chordthmlem2 25983 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → ((𝑄 − 𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃 − 𝑀)) ∈ {(π / 2), -(π /
2)}) |
66 | | eqid 2738 |
. . . 4
⊢
(abs‘(𝑄
− 𝑀)) =
(abs‘(𝑄 − 𝑀)) |
67 | | eqid 2738 |
. . . 4
⊢
(abs‘(𝑃
− 𝑀)) =
(abs‘(𝑃 − 𝑀)) |
68 | | eqid 2738 |
. . . 4
⊢
(abs‘(𝑃
− 𝑄)) =
(abs‘(𝑃 − 𝑄)) |
69 | | eqid 2738 |
. . . 4
⊢ ((𝑄 − 𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃 − 𝑀)) = ((𝑄 − 𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃 − 𝑀)) |
70 | 57, 66, 67, 68, 69 | pythag 25967 |
. . 3
⊢ (((𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀) ∧ ((𝑄 − 𝑀)(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0})
↦ (ℑ‘(log‘(𝑦 / 𝑥))))(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) →
((abs‘(𝑃 −
𝑄))↑2) =
(((abs‘(𝑄 −
𝑀))↑2) +
((abs‘(𝑃 −
𝑀))↑2))) |
71 | 52, 53, 54, 55, 56, 65, 70 | syl321anc 1391 |
. 2
⊢ ((𝜑 ∧ (𝑃 ≠ 𝑀 ∧ 𝑄 ≠ 𝑀)) → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2))) |
72 | 35, 51, 71 | pm2.61da2ne 3033 |
1
⊢ (𝜑 → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2))) |