Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim2N Structured version   Visualization version   GIF version

Theorem lfl1dim2N 37930
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 37929 may be more compatible with lspsn 20601. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim2N (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim2N
StepHypRef Expression
1 lfl1dim.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 20705 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
4 lfl1dim.d . . . . . . . . 9 𝐷 = (Scalar‘𝑊)
5 lfl1dim.k . . . . . . . . 9 𝐾 = (Base‘𝐷)
6 eqid 2733 . . . . . . . . 9 (0g𝐷) = (0g𝐷)
74, 5, 6lmod0cl 20486 . . . . . . . 8 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
83, 7syl 17 . . . . . . 7 (𝜑 → (0g𝐷) ∈ 𝐾)
98ad2antrr 725 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
10 simpr 486 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
11 lfl1dim.v . . . . . . . 8 𝑉 = (Base‘𝑊)
12 lfl1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
13 lfl1dim.t . . . . . . . 8 · = (.r𝐷)
143ad2antrr 725 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
15 lfl1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1615ad2antrr 725 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1711, 4, 12, 5, 13, 6, 14, 16lfl0sc 37890 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1810, 17eqtr4d 2776 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
19 sneq 4637 . . . . . . . . 9 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2019xpeq2d 5705 . . . . . . . 8 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2120oveq2d 7420 . . . . . . 7 (𝑘 = (0g𝐷) → (𝐺f · (𝑉 × {𝑘})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2221rspceeqv 3632 . . . . . 6 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺f · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
239, 18, 22syl2anc 585 . . . . 5 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2423a1d 25 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
258ad3antrrr 729 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
26 lfl1dim.l . . . . . . . . . 10 𝐿 = (LKer‘𝑊)
273ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
28 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
2911, 12, 26, 27, 28lkrssv 37904 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
303adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3115adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝐺𝐹)
324, 6, 11, 12, 26lkr0f 37902 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3330, 31, 32syl2anc 585 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3433biimpar 479 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3534sseq1d 4012 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3635biimpa 478 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3729, 36eqssd 3998 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
384, 6, 11, 12, 26lkr0f 37902 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
3927, 28, 38syl2anc 585 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4037, 39mpbid 231 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4115ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4211, 4, 12, 5, 13, 6, 27, 41lfl0sc 37890 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4340, 42eqtr4d 2776 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
4425, 43, 22syl2anc 585 . . . . 5 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
4544ex 414 . . . 4 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
46 eqid 2733 . . . . . 6 (LSHyp‘𝑊) = (LSHyp‘𝑊)
471ad2antrr 725 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4815ad2antrr 725 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
49 simprr 772 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5011, 4, 6, 46, 12, 26lkrshp 37913 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5147, 48, 49, 50syl3anc 1372 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
52 simplr 768 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
53 simprl 770 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5411, 4, 6, 46, 12, 26lkrshp 37913 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5547, 52, 53, 54syl3anc 1372 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5646, 47, 51, 55lshpcmp 37796 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
571ad3antrrr 729 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5815ad3antrrr 729 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
59 simpllr 775 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
60 simpr 486 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
614, 5, 13, 11, 12, 26eqlkr2 37908 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6257, 58, 59, 60, 61syl121anc 1376 . . . . . 6 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6362ex 414 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6456, 63sylbid 239 . . . 4 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6524, 45, 64pm2.61da2ne 3031 . . 3 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
661ad2antrr 725 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6715ad2antrr 725 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
68 simpr 486 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
6911, 4, 5, 13, 12, 26, 66, 67, 68lkrscss 37906 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7069ex 414 . . . . 5 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
71 fveq2 6888 . . . . . . 7 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7271sseq2d 4013 . . . . . 6 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
7372biimprcd 249 . . . . 5 ((𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7470, 73syl6 35 . . . 4 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7574rexlimdv 3154 . . 3 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7665, 75impbid 211 . 2 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
7776rabbidva 3440 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wrex 3071  {crab 3433  wss 3947  {csn 4627   × cxp 5673  cfv 6540  (class class class)co 7404  f cof 7663  Basecbs 17140  .rcmulr 17194  Scalarcsca 17196  0gc0g 17381  LModclmod 20459  LVecclvec 20701  LSHypclsh 37783  LFnlclfn 37865  LKerclk 37893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19497  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-drng 20306  df-lmod 20461  df-lss 20531  df-lsp 20571  df-lvec 20702  df-lshyp 37785  df-lfl 37866  df-lkr 37894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator