Proof of Theorem lfl1dim2N
| Step | Hyp | Ref
| Expression |
| 1 | | lfl1dim.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 2 | | lveclmod 21078 |
. . . . . . . . 9
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | | lfl1dim.d |
. . . . . . . . 9
⊢ 𝐷 = (Scalar‘𝑊) |
| 5 | | lfl1dim.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝐷) |
| 6 | | eqid 2734 |
. . . . . . . . 9
⊢
(0g‘𝐷) = (0g‘𝐷) |
| 7 | 4, 5, 6 | lmod0cl 20859 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod →
(0g‘𝐷)
∈ 𝐾) |
| 8 | 3, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝐷) ∈ 𝐾) |
| 9 | 8 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) →
(0g‘𝐷)
∈ 𝐾) |
| 10 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝑉 × {(0g‘𝐷)})) |
| 11 | | lfl1dim.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
| 12 | | lfl1dim.f |
. . . . . . . 8
⊢ 𝐹 = (LFnl‘𝑊) |
| 13 | | lfl1dim.t |
. . . . . . . 8
⊢ · =
(.r‘𝐷) |
| 14 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LMod) |
| 15 | | lfl1dim.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 16 | 15 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝐺 ∈ 𝐹) |
| 17 | 11, 4, 12, 5, 13, 6, 14, 16 | lfl0sc 39024 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
| 18 | 10, 17 | eqtr4d 2772 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
| 19 | | sneq 4618 |
. . . . . . . . 9
⊢ (𝑘 = (0g‘𝐷) → {𝑘} = {(0g‘𝐷)}) |
| 20 | 19 | xpeq2d 5697 |
. . . . . . . 8
⊢ (𝑘 = (0g‘𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g‘𝐷)})) |
| 21 | 20 | oveq2d 7430 |
. . . . . . 7
⊢ (𝑘 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑘})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
| 22 | 21 | rspceeqv 3629 |
. . . . . 6
⊢
(((0g‘𝐷) ∈ 𝐾 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
| 23 | 9, 18, 22 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
| 24 | 23 | a1d 25 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
| 25 | 8 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (0g‘𝐷) ∈ 𝐾) |
| 26 | | lfl1dim.l |
. . . . . . . . . 10
⊢ 𝐿 = (LKer‘𝑊) |
| 27 | 3 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑊 ∈ LMod) |
| 28 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) |
| 29 | 11, 12, 26, 27, 28 | lkrssv 39038 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) ⊆ 𝑉) |
| 30 | 3 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 31 | 15 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝐺 ∈ 𝐹) |
| 32 | 4, 6, 11, 12, 26 | lkr0f 39036 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
| 34 | 33 | biimpar 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) = 𝑉) |
| 35 | 34 | sseq1d 3997 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ 𝑉 ⊆ (𝐿‘𝑔))) |
| 36 | 35 | biimpa 476 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑉 ⊆ (𝐿‘𝑔)) |
| 37 | 29, 36 | eqssd 3983 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) = 𝑉) |
| 38 | 4, 6, 11, 12, 26 | lkr0f 39036 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) |
| 39 | 27, 28, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) |
| 40 | 37, 39 | mpbid 232 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝑉 × {(0g‘𝐷)})) |
| 41 | 15 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) |
| 42 | 11, 4, 12, 5, 13, 6, 27, 41 | lfl0sc 39024 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
| 43 | 40, 42 | eqtr4d 2772 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
| 44 | 25, 43, 22 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
| 45 | 44 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
| 46 | | eqid 2734 |
. . . . . 6
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
| 47 | 1 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑊 ∈ LVec) |
| 48 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ∈ 𝐹) |
| 49 | | simprr 772 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) |
| 50 | 11, 4, 6, 46, 12, 26 | lkrshp 39047 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) |
| 51 | 47, 48, 49, 50 | syl3anc 1372 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) |
| 52 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ∈ 𝐹) |
| 53 | | simprl 770 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) |
| 54 | 11, 4, 6, 46, 12, 26 | lkrshp 39047 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) |
| 55 | 47, 52, 53, 54 | syl3anc 1372 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) |
| 56 | 46, 47, 51, 55 | lshpcmp 38930 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) = (𝐿‘𝑔))) |
| 57 | 1 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑊 ∈ LVec) |
| 58 | 15 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) |
| 59 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) |
| 60 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → (𝐿‘𝐺) = (𝐿‘𝑔)) |
| 61 | 4, 5, 13, 11, 12, 26 | eqlkr2 39042 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
| 62 | 57, 58, 59, 60, 61 | syl121anc 1376 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
| 63 | 62 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) = (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
| 64 | 56, 63 | sylbid 240 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
| 65 | 24, 45, 64 | pm2.61da2ne 3019 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
| 66 | 1 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LVec) |
| 67 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝐺 ∈ 𝐹) |
| 68 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) |
| 69 | 11, 4, 5, 13, 12, 26, 66, 67, 68 | lkrscss 39040 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) |
| 70 | 69 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) |
| 71 | | fveq2 6887 |
. . . . . . 7
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝑔) = (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) |
| 72 | 71 | sseq2d 3998 |
. . . . . 6
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) |
| 73 | 72 | biimprcd 250 |
. . . . 5
⊢ ((𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) |
| 74 | 70, 73 | syl6 35 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔)))) |
| 75 | 74 | rexlimdv 3140 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) |
| 76 | 65, 75 | impbid 212 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
| 77 | 76 | rabbidva 3427 |
1
⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) |