Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim2N Structured version   Visualization version   GIF version

Theorem lfl1dim2N 39064
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 39063 may be more compatible with lspsn 20973. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim2N (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim2N
StepHypRef Expression
1 lfl1dim.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 21078 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
4 lfl1dim.d . . . . . . . . 9 𝐷 = (Scalar‘𝑊)
5 lfl1dim.k . . . . . . . . 9 𝐾 = (Base‘𝐷)
6 eqid 2734 . . . . . . . . 9 (0g𝐷) = (0g𝐷)
74, 5, 6lmod0cl 20859 . . . . . . . 8 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
83, 7syl 17 . . . . . . 7 (𝜑 → (0g𝐷) ∈ 𝐾)
98ad2antrr 726 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
10 simpr 484 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
11 lfl1dim.v . . . . . . . 8 𝑉 = (Base‘𝑊)
12 lfl1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
13 lfl1dim.t . . . . . . . 8 · = (.r𝐷)
143ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
15 lfl1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1615ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1711, 4, 12, 5, 13, 6, 14, 16lfl0sc 39024 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1810, 17eqtr4d 2772 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
19 sneq 4618 . . . . . . . . 9 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2019xpeq2d 5697 . . . . . . . 8 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2120oveq2d 7430 . . . . . . 7 (𝑘 = (0g𝐷) → (𝐺f · (𝑉 × {𝑘})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2221rspceeqv 3629 . . . . . 6 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺f · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
239, 18, 22syl2anc 584 . . . . 5 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2423a1d 25 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
258ad3antrrr 730 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
26 lfl1dim.l . . . . . . . . . 10 𝐿 = (LKer‘𝑊)
273ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
28 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
2911, 12, 26, 27, 28lkrssv 39038 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
303adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3115adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝐺𝐹)
324, 6, 11, 12, 26lkr0f 39036 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3330, 31, 32syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3433biimpar 477 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3534sseq1d 3997 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3635biimpa 476 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3729, 36eqssd 3983 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
384, 6, 11, 12, 26lkr0f 39036 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
3927, 28, 38syl2anc 584 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4037, 39mpbid 232 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4115ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4211, 4, 12, 5, 13, 6, 27, 41lfl0sc 39024 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4340, 42eqtr4d 2772 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
4425, 43, 22syl2anc 584 . . . . 5 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
4544ex 412 . . . 4 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
46 eqid 2734 . . . . . 6 (LSHyp‘𝑊) = (LSHyp‘𝑊)
471ad2antrr 726 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4815ad2antrr 726 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
49 simprr 772 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5011, 4, 6, 46, 12, 26lkrshp 39047 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5147, 48, 49, 50syl3anc 1372 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
52 simplr 768 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
53 simprl 770 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5411, 4, 6, 46, 12, 26lkrshp 39047 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5547, 52, 53, 54syl3anc 1372 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5646, 47, 51, 55lshpcmp 38930 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
571ad3antrrr 730 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5815ad3antrrr 730 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
59 simpllr 775 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
60 simpr 484 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
614, 5, 13, 11, 12, 26eqlkr2 39042 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6257, 58, 59, 60, 61syl121anc 1376 . . . . . 6 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6362ex 412 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6456, 63sylbid 240 . . . 4 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6524, 45, 64pm2.61da2ne 3019 . . 3 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
661ad2antrr 726 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6715ad2antrr 726 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
68 simpr 484 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
6911, 4, 5, 13, 12, 26, 66, 67, 68lkrscss 39040 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7069ex 412 . . . . 5 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
71 fveq2 6887 . . . . . . 7 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7271sseq2d 3998 . . . . . 6 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
7372biimprcd 250 . . . . 5 ((𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7470, 73syl6 35 . . . 4 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7574rexlimdv 3140 . . 3 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7665, 75impbid 212 . 2 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
7776rabbidva 3427 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3420  wss 3933  {csn 4608   × cxp 5665  cfv 6542  (class class class)co 7414  f cof 7678  Basecbs 17230  .rcmulr 17278  Scalarcsca 17280  0gc0g 17460  LModclmod 20831  LVecclvec 21074  LSHypclsh 38917  LFnlclfn 38999  LKerclk 39027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-1st 7997  df-2nd 7998  df-tpos 8234  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-grp 18928  df-minusg 18929  df-sbg 18930  df-subg 19115  df-cntz 19309  df-lsm 19627  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-ring 20205  df-oppr 20307  df-dvdsr 20330  df-unit 20331  df-invr 20361  df-nzr 20486  df-rlreg 20667  df-domn 20668  df-drng 20704  df-lmod 20833  df-lss 20903  df-lsp 20943  df-lvec 21075  df-lshyp 38919  df-lfl 39000  df-lkr 39028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator