Proof of Theorem lfl1dim2N
Step | Hyp | Ref
| Expression |
1 | | lfl1dim.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ LVec) |
2 | | lveclmod 20368 |
. . . . . . . . 9
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | | lfl1dim.d |
. . . . . . . . 9
⊢ 𝐷 = (Scalar‘𝑊) |
5 | | lfl1dim.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝐷) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝐷) = (0g‘𝐷) |
7 | 4, 5, 6 | lmod0cl 20149 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod →
(0g‘𝐷)
∈ 𝐾) |
8 | 3, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝐷) ∈ 𝐾) |
9 | 8 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) →
(0g‘𝐷)
∈ 𝐾) |
10 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝑉 × {(0g‘𝐷)})) |
11 | | lfl1dim.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
12 | | lfl1dim.f |
. . . . . . . 8
⊢ 𝐹 = (LFnl‘𝑊) |
13 | | lfl1dim.t |
. . . . . . . 8
⊢ · =
(.r‘𝐷) |
14 | 3 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LMod) |
15 | | lfl1dim.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
16 | 15 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝐺 ∈ 𝐹) |
17 | 11, 4, 12, 5, 13, 6, 14, 16 | lfl0sc 37096 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
18 | 10, 17 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
19 | | sneq 4571 |
. . . . . . . . 9
⊢ (𝑘 = (0g‘𝐷) → {𝑘} = {(0g‘𝐷)}) |
20 | 19 | xpeq2d 5619 |
. . . . . . . 8
⊢ (𝑘 = (0g‘𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g‘𝐷)})) |
21 | 20 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑘 = (0g‘𝐷) → (𝐺 ∘f · (𝑉 × {𝑘})) = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
22 | 21 | rspceeqv 3575 |
. . . . . 6
⊢
(((0g‘𝐷) ∈ 𝐾 ∧ 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
23 | 9, 18, 22 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
24 | 23 | a1d 25 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑔 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
25 | 8 | ad3antrrr 727 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (0g‘𝐷) ∈ 𝐾) |
26 | | lfl1dim.l |
. . . . . . . . . 10
⊢ 𝐿 = (LKer‘𝑊) |
27 | 3 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑊 ∈ LMod) |
28 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) |
29 | 11, 12, 26, 27, 28 | lkrssv 37110 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) ⊆ 𝑉) |
30 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝑊 ∈ LMod) |
31 | 15 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → 𝐺 ∈ 𝐹) |
32 | 4, 6, 11, 12, 26 | lkr0f 37108 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
34 | 33 | biimpar 478 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) = 𝑉) |
35 | 34 | sseq1d 3952 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ 𝑉 ⊆ (𝐿‘𝑔))) |
36 | 35 | biimpa 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑉 ⊆ (𝐿‘𝑔)) |
37 | 29, 36 | eqssd 3938 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐿‘𝑔) = 𝑉) |
38 | 4, 6, 11, 12, 26 | lkr0f 37108 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) |
39 | 27, 28, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ((𝐿‘𝑔) = 𝑉 ↔ 𝑔 = (𝑉 × {(0g‘𝐷)}))) |
40 | 37, 39 | mpbid 231 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝑉 × {(0g‘𝐷)})) |
41 | 15 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) |
42 | 11, 4, 12, 5, 13, 6, 27, 41 | lfl0sc 37096 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → (𝐺 ∘f · (𝑉 × {(0g‘𝐷)})) = (𝑉 × {(0g‘𝐷)})) |
43 | 40, 42 | eqtr4d 2781 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → 𝑔 = (𝐺 ∘f · (𝑉 × {(0g‘𝐷)}))) |
44 | 25, 43, 22 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) ∧ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
45 | 44 | ex 413 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
46 | | eqid 2738 |
. . . . . 6
⊢
(LSHyp‘𝑊) =
(LSHyp‘𝑊) |
47 | 1 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑊 ∈ LVec) |
48 | 15 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ∈ 𝐹) |
49 | | simprr 770 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) |
50 | 11, 4, 6, 46, 12, 26 | lkrshp 37119 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) |
51 | 47, 48, 49, 50 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝐺) ∈ (LSHyp‘𝑊)) |
52 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ∈ 𝐹) |
53 | | simprl 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) |
54 | 11, 4, 6, 46, 12, 26 | lkrshp 37119 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ (𝑉 × {(0g‘𝐷)})) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) |
55 | 47, 52, 53, 54 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → (𝐿‘𝑔) ∈ (LSHyp‘𝑊)) |
56 | 46, 47, 51, 55 | lshpcmp 37002 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) = (𝐿‘𝑔))) |
57 | 1 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑊 ∈ LVec) |
58 | 15 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝐺 ∈ 𝐹) |
59 | | simpllr 773 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → 𝑔 ∈ 𝐹) |
60 | | simpr 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → (𝐿‘𝐺) = (𝐿‘𝑔)) |
61 | 4, 5, 13, 11, 12, 26 | eqlkr2 37114 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
62 | 57, 58, 59, 60, 61 | syl121anc 1374 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) ∧ (𝐿‘𝐺) = (𝐿‘𝑔)) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))) |
63 | 62 | ex 413 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) = (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
64 | 56, 63 | sylbid 239 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)}))) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
65 | 24, 45, 64 | pm2.61da2ne 3033 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) → ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
66 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LVec) |
67 | 15 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝐺 ∈ 𝐹) |
68 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) |
69 | 11, 4, 5, 13, 12, 26, 66, 67, 68 | lkrscss 37112 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ 𝐹) ∧ 𝑘 ∈ 𝐾) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) |
70 | 69 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) |
71 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝑔) = (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘})))) |
72 | 71 | sseq2d 3953 |
. . . . . 6
⊢ (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))))) |
73 | 72 | biimprcd 249 |
. . . . 5
⊢ ((𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) |
74 | 70, 73 | syl6 35 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (𝑘 ∈ 𝐾 → (𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔)))) |
75 | 74 | rexlimdv 3212 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → (∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})) → (𝐿‘𝐺) ⊆ (𝐿‘𝑔))) |
76 | 65, 75 | impbid 211 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐹) → ((𝐿‘𝐺) ⊆ (𝐿‘𝑔) ↔ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘})))) |
77 | 76 | rabbidva 3413 |
1
⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) |