Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim2N Structured version   Visualization version   GIF version

Theorem lfl1dim2N 39169
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 39168 may be more compatible with lspsn 20935. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim2N (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim2N
StepHypRef Expression
1 lfl1dim.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 21040 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
4 lfl1dim.d . . . . . . . . 9 𝐷 = (Scalar‘𝑊)
5 lfl1dim.k . . . . . . . . 9 𝐾 = (Base‘𝐷)
6 eqid 2731 . . . . . . . . 9 (0g𝐷) = (0g𝐷)
74, 5, 6lmod0cl 20821 . . . . . . . 8 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
83, 7syl 17 . . . . . . 7 (𝜑 → (0g𝐷) ∈ 𝐾)
98ad2antrr 726 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
10 simpr 484 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
11 lfl1dim.v . . . . . . . 8 𝑉 = (Base‘𝑊)
12 lfl1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
13 lfl1dim.t . . . . . . . 8 · = (.r𝐷)
143ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
15 lfl1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1615ad2antrr 726 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1711, 4, 12, 5, 13, 6, 14, 16lfl0sc 39129 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1810, 17eqtr4d 2769 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
19 sneq 4583 . . . . . . . . 9 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2019xpeq2d 5644 . . . . . . . 8 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2120oveq2d 7362 . . . . . . 7 (𝑘 = (0g𝐷) → (𝐺f · (𝑉 × {𝑘})) = (𝐺f · (𝑉 × {(0g𝐷)})))
2221rspceeqv 3595 . . . . . 6 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺f · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
239, 18, 22syl2anc 584 . . . . 5 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
2423a1d 25 . . . 4 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
258ad3antrrr 730 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
26 lfl1dim.l . . . . . . . . . 10 𝐿 = (LKer‘𝑊)
273ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
28 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
2911, 12, 26, 27, 28lkrssv 39143 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
303adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3115adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐹) → 𝐺𝐹)
324, 6, 11, 12, 26lkr0f 39141 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3330, 31, 32syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3433biimpar 477 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3534sseq1d 3961 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3635biimpa 476 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3729, 36eqssd 3947 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
384, 6, 11, 12, 26lkr0f 39141 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
3927, 28, 38syl2anc 584 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4037, 39mpbid 232 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4115ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4211, 4, 12, 5, 13, 6, 27, 41lfl0sc 39129 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺f · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4340, 42eqtr4d 2769 . . . . . 6 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺f · (𝑉 × {(0g𝐷)})))
4425, 43, 22syl2anc 584 . . . . 5 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
4544ex 412 . . . 4 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
46 eqid 2731 . . . . . 6 (LSHyp‘𝑊) = (LSHyp‘𝑊)
471ad2antrr 726 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
4815ad2antrr 726 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
49 simprr 772 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5011, 4, 6, 46, 12, 26lkrshp 39152 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5147, 48, 49, 50syl3anc 1373 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
52 simplr 768 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
53 simprl 770 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5411, 4, 6, 46, 12, 26lkrshp 39152 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5547, 52, 53, 54syl3anc 1373 . . . . . 6 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5646, 47, 51, 55lshpcmp 39035 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
571ad3antrrr 730 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
5815ad3antrrr 730 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
59 simpllr 775 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
60 simpr 484 . . . . . . 7 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
614, 5, 13, 11, 12, 26eqlkr2 39147 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6257, 58, 59, 60, 61syl121anc 1377 . . . . . 6 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})))
6362ex 412 . . . . 5 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6456, 63sylbid 240 . . . 4 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
6524, 45, 64pm2.61da2ne 3016 . . 3 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
661ad2antrr 726 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6715ad2antrr 726 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
68 simpr 484 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
6911, 4, 5, 13, 12, 26, 66, 67, 68lkrscss 39145 . . . . . 6 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7069ex 412 . . . . 5 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
71 fveq2 6822 . . . . . . 7 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺f · (𝑉 × {𝑘}))))
7271sseq2d 3962 . . . . . 6 (𝑔 = (𝐺f · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘})))))
7372biimprcd 250 . . . . 5 ((𝐿𝐺) ⊆ (𝐿‘(𝐺f · (𝑉 × {𝑘}))) → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7470, 73syl6 35 . . . 4 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7574rexlimdv 3131 . . 3 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7665, 75impbid 212 . 2 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))))
7776rabbidva 3401 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔𝐹 ∣ ∃𝑘𝐾 𝑔 = (𝐺f · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  wss 3897  {csn 4573   × cxp 5612  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164  0gc0g 17343  LModclmod 20793  LVecclvec 21036  LSHypclsh 39022  LFnlclfn 39104  LKerclk 39132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lshyp 39024  df-lfl 39105  df-lkr 39133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator