Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6k Structured version   Visualization version   GIF version

Theorem hdmap1l6k 41781
Description: Lemmma for hdmap1l6 41782. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6k.y (𝜑𝑌𝑉)
hdmap1l6k.z (𝜑𝑍𝑉)
hdmap1l6k.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
hdmap1l6k (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6k
StepHypRef Expression
1 hdmap1l6.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . . 3 + = (+g𝑈)
5 hdmap1l6.s . . 3 = (-g𝑈)
6 hdmap1l6c.o . . 3 0 = (0g𝑈)
7 hdmap1l6.n . . 3 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . . 3 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . . 3 = (+g𝐶)
11 hdmap1l6.r . . 3 𝑅 = (-g𝐶)
12 hdmap1l6.q . . 3 𝑄 = (0g𝐶)
13 hdmap1l6.l . . 3 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . . 3 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1716adantr 480 . . 3 ((𝜑𝑌 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
1918adantr 480 . . 3 ((𝜑𝑌 = 0 ) → 𝐹𝐷)
20 hdmap1l6cl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 480 . . 3 ((𝜑𝑌 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
2322adantr 480 . . 3 ((𝜑𝑌 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
24 simpr 484 . . 3 ((𝜑𝑌 = 0 ) → 𝑌 = 0 )
25 hdmap1l6k.z . . . 4 (𝜑𝑍𝑉)
2625adantr 480 . . 3 ((𝜑𝑌 = 0 ) → 𝑍𝑉)
27 hdmap1l6k.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2827adantr 480 . . 3 ((𝜑𝑌 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 24, 26, 28hdmap1l6b 41772 . 2 ((𝜑𝑌 = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3016adantr 480 . . 3 ((𝜑𝑍 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3118adantr 480 . . 3 ((𝜑𝑍 = 0 ) → 𝐹𝐷)
3220adantr 480 . . 3 ((𝜑𝑍 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3322adantr 480 . . 3 ((𝜑𝑍 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
34 hdmap1l6k.y . . . 4 (𝜑𝑌𝑉)
3534adantr 480 . . 3 ((𝜑𝑍 = 0 ) → 𝑌𝑉)
36 simpr 484 . . 3 ((𝜑𝑍 = 0 ) → 𝑍 = 0 )
3727adantr 480 . . 3 ((𝜑𝑍 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 30, 31, 32, 33, 35, 36, 37hdmap1l6c 41773 . 2 ((𝜑𝑍 = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3916adantr 480 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4018adantr 480 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝐹𝐷)
4120adantr 480 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4222adantr 480 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
4327adantr 480 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4434adantr 480 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑌𝑉)
45 simprl 770 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑌0 )
46 eldifsn 4766 . . . 4 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
4744, 45, 46sylanbrc 583 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4825adantr 480 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑍𝑉)
49 simprr 772 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑍0 )
50 eldifsn 4766 . . . 4 (𝑍 ∈ (𝑉 ∖ { 0 }) ↔ (𝑍𝑉𝑍0 ))
5148, 49, 50sylanbrc 583 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑍 ∈ (𝑉 ∖ { 0 }))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 39, 40, 41, 42, 43, 47, 51hdmap1l6j 41780 . 2 ((𝜑 ∧ (𝑌0𝑍0 )) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
5329, 38, 52pm2.61da2ne 3019 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3928  {csn 4606  {cpr 4608  cotp 4614  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  0gc0g 17455  -gcsg 18922  LSpanclspn 20937  HLchlt 39310  LHypclh 39945  DVecHcdvh 41039  LCDualclcd 41547  mapdcmpd 41585  HDMap1chdma1 41752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38913
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-0g 17457  df-mre 17600  df-mrc 17601  df-acs 17603  df-proset 18310  df-poset 18329  df-plt 18344  df-lub 18360  df-glb 18361  df-join 18362  df-meet 18363  df-p0 18439  df-p1 18440  df-lat 18446  df-clat 18513  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cntz 19304  df-oppg 19333  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-dvr 20369  df-nzr 20481  df-rlreg 20662  df-domn 20663  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lvec 21070  df-lsatoms 38936  df-lshyp 38937  df-lcv 38979  df-lfl 39018  df-lkr 39046  df-ldual 39084  df-oposet 39136  df-ol 39138  df-oml 39139  df-covers 39226  df-ats 39227  df-atl 39258  df-cvlat 39282  df-hlat 39311  df-llines 39459  df-lplanes 39460  df-lvols 39461  df-lines 39462  df-psubsp 39464  df-pmap 39465  df-padd 39757  df-lhyp 39949  df-laut 39950  df-ldil 40065  df-ltrn 40066  df-trl 40120  df-tgrp 40704  df-tendo 40716  df-edring 40718  df-dveca 40964  df-disoa 40990  df-dvech 41040  df-dib 41100  df-dic 41134  df-dih 41190  df-doch 41309  df-djh 41356  df-lcdual 41548  df-mapd 41586  df-hdmap1 41754
This theorem is referenced by:  hdmap1l6  41782
  Copyright terms: Public domain W3C validator