![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6k | Structured version Visualization version GIF version |
Description: Lemmma for hdmap1l6 41533. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1l6.p | ⊢ + = (+g‘𝑈) |
hdmap1l6.s | ⊢ − = (-g‘𝑈) |
hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
hdmap1l6k.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
hdmap1l6k.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
hdmap1l6k.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
hdmap1l6k | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1l6.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1l6.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1l6.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1l6.p | . . 3 ⊢ + = (+g‘𝑈) | |
5 | hdmap1l6.s | . . 3 ⊢ − = (-g‘𝑈) | |
6 | hdmap1l6c.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
7 | hdmap1l6.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | hdmap1l6.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
9 | hdmap1l6.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
10 | hdmap1l6.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
11 | hdmap1l6.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
12 | hdmap1l6.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
13 | hdmap1l6.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
14 | hdmap1l6.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
15 | hdmap1l6.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
16 | hdmap1l6.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 16 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
18 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
19 | 18 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐹 ∈ 𝐷) |
20 | hdmap1l6cl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | 20 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
22 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
23 | 22 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
24 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) | |
25 | hdmap1l6k.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
26 | 25 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑍 ∈ 𝑉) |
27 | hdmap1l6k.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
28 | 27 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 24, 26, 28 | hdmap1l6b 41523 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
30 | 16 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
31 | 18 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝐹 ∈ 𝐷) |
32 | 20 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
33 | 22 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
34 | hdmap1l6k.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
35 | 34 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝑌 ∈ 𝑉) |
36 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝑍 = 0 ) | |
37 | 27 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
38 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 30, 31, 32, 33, 35, 36, 37 | hdmap1l6c 41524 | . 2 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
39 | 16 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | 18 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝐹 ∈ 𝐷) |
41 | 20 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
42 | 22 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
43 | 27 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
44 | 34 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑌 ∈ 𝑉) |
45 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑌 ≠ 0 ) | |
46 | eldifsn 4785 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
47 | 44, 45, 46 | sylanbrc 581 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
48 | 25 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑍 ∈ 𝑉) |
49 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑍 ≠ 0 ) | |
50 | eldifsn 4785 | . . . 4 ⊢ (𝑍 ∈ (𝑉 ∖ { 0 }) ↔ (𝑍 ∈ 𝑉 ∧ 𝑍 ≠ 0 )) | |
51 | 48, 49, 50 | sylanbrc 581 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
52 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 39, 40, 41, 42, 43, 47, 51 | hdmap1l6j 41531 | . 2 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
53 | 29, 38, 52 | pm2.61da2ne 3020 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3943 {csn 4623 {cpr 4625 〈cotp 4631 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 +gcplusg 17261 0gc0g 17449 -gcsg 18925 LSpanclspn 20944 HLchlt 39061 LHypclh 39696 DVecHcdvh 40790 LCDualclcd 41298 mapdcmpd 41336 HDMap1chdma1 41503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-riotaBAD 38664 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-0g 17451 df-mre 17594 df-mrc 17595 df-acs 17597 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-p1 18446 df-lat 18452 df-clat 18519 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-subg 19113 df-cntz 19307 df-oppg 19336 df-lsm 19630 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-ring 20214 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-invr 20366 df-dvr 20379 df-nzr 20491 df-rlreg 20668 df-domn 20669 df-drng 20705 df-lmod 20834 df-lss 20905 df-lsp 20945 df-lvec 21077 df-lsatoms 38687 df-lshyp 38688 df-lcv 38730 df-lfl 38769 df-lkr 38797 df-ldual 38835 df-oposet 38887 df-ol 38889 df-oml 38890 df-covers 38977 df-ats 38978 df-atl 39009 df-cvlat 39033 df-hlat 39062 df-llines 39210 df-lplanes 39211 df-lvols 39212 df-lines 39213 df-psubsp 39215 df-pmap 39216 df-padd 39508 df-lhyp 39700 df-laut 39701 df-ldil 39816 df-ltrn 39817 df-trl 39871 df-tgrp 40455 df-tendo 40467 df-edring 40469 df-dveca 40715 df-disoa 40741 df-dvech 40791 df-dib 40851 df-dic 40885 df-dih 40941 df-doch 41060 df-djh 41107 df-lcdual 41299 df-mapd 41337 df-hdmap1 41505 |
This theorem is referenced by: hdmap1l6 41533 |
Copyright terms: Public domain | W3C validator |