Proof of Theorem cdlemg44b
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl21 1250 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
3 | | simpl23 1252 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | simpl22 1251 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐺 ∈ 𝑇) |
5 | | cdlemg44.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
6 | | cdlemg44.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | cdlemg44.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
8 | | cdlemg44.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
9 | 5, 6, 7, 8 | ltrnel 38153 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
10 | 1, 4, 3, 9 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
11 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
12 | 5, 6, 7, 8 | ltrnateq 38195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘𝑃)) |
13 | 1, 2, 3, 10, 11, 12 | syl131anc 1382 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘𝑃)) |
14 | 11 | fveq2d 6778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐺‘(𝐹‘𝑃)) = (𝐺‘𝑃)) |
15 | 13, 14 | eqtr4d 2781 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) |
16 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → (𝐺‘𝑃) = 𝑃) |
17 | 16 | fveq2d 6778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = (𝐹‘𝑃)) |
18 | | simpl1 1190 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | | simpl22 1251 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → 𝐺 ∈ 𝑇) |
20 | | simpl23 1252 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
21 | | simpl21 1250 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
22 | 5, 6, 7, 8 | ltrnel 38153 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
23 | 18, 21, 20, 22 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) |
24 | 5, 6, 7, 8 | ltrnateq 38195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ ¬ (𝐹‘𝑃) ≤ 𝑊)) ∧ (𝐺‘𝑃) = 𝑃) → (𝐺‘(𝐹‘𝑃)) = (𝐹‘𝑃)) |
25 | 18, 19, 20, 23, 16, 24 | syl131anc 1382 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → (𝐺‘(𝐹‘𝑃)) = (𝐹‘𝑃)) |
26 | 17, 25 | eqtr4d 2781 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ (𝐺‘𝑃) = 𝑃) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) |
27 | | simpl1 1190 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | | simpl2 1191 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) |
29 | | simprl 768 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ≠ 𝑃) |
30 | | simprr 770 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐺‘𝑃) ≠ 𝑃) |
31 | | simpl3 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) |
32 | | cdlemg44.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
33 | 7, 8, 32, 5, 6 | cdlemg44a 38745 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) |
34 | 27, 28, 29, 30, 31, 33 | syl113anc 1381 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃)) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) |
35 | 15, 26, 34 | pm2.61da2ne 3033 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) |