Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44b Structured version   Visualization version   GIF version

Theorem cdlemg44b 40431
Description: Eliminate (𝐹𝑃) ≠ 𝑃, (𝐺𝑃) ≠ 𝑃 from cdlemg44a 40430. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h 𝐻 = (LHyp‘𝐾)
cdlemg44.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg44.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg44.l = (le‘𝐾)
cdlemg44.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemg44b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))

Proof of Theorem cdlemg44b
StepHypRef Expression
1 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl21 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
3 simpl23 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simpl22 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → 𝐺𝑇)
5 cdlemg44.l . . . . . 6 = (le‘𝐾)
6 cdlemg44.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 cdlemg44.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg44.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnel 39838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
101, 4, 3, 9syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
11 simpr 483 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
125, 6, 7, 8ltrnateq 39880 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
131, 2, 3, 10, 11, 12syl131anc 1380 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
1411fveq2d 6905 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐺𝑃))
1513, 14eqtr4d 2769 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
16 simpr 483 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐺𝑃) = 𝑃)
1716fveq2d 6905 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐹𝑃))
18 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl22 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → 𝐺𝑇)
20 simpl23 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simpl21 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → 𝐹𝑇)
225, 6, 7, 8ltrnel 39838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
2318, 21, 20, 22syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
245, 6, 7, 8ltrnateq 39880 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) ∧ (𝐺𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐹𝑃))
2518, 19, 20, 23, 16, 24syl131anc 1380 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐹𝑃))
2617, 25eqtr4d 2769 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
27 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)))
29 simprl 769 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
30 simprr 771 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐺𝑃) ≠ 𝑃)
31 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ (𝑅𝐺))
32 cdlemg44.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
337, 8, 32, 5, 6cdlemg44a 40430 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
3427, 28, 29, 30, 31, 33syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
3515, 26, 34pm2.61da2ne 3020 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  lecple 17273  Atomscatm 38961  HLchlt 39048  LHypclh 39683  LTrncltrn 39800  trLctrl 39857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-map 8857  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-p1 18451  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-llines 39197  df-psubsp 39202  df-pmap 39203  df-padd 39495  df-lhyp 39687  df-laut 39688  df-ldil 39803  df-ltrn 39804  df-trl 39858
This theorem is referenced by:  cdlemg44  40432
  Copyright terms: Public domain W3C validator