Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44b Structured version   Visualization version   GIF version

Theorem cdlemg44b 38027
 Description: Eliminate (𝐹‘𝑃) ≠ 𝑃, (𝐺‘𝑃) ≠ 𝑃 from cdlemg44a 38026. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h 𝐻 = (LHyp‘𝐾)
cdlemg44.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg44.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg44.l = (le‘𝐾)
cdlemg44.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cdlemg44b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))

Proof of Theorem cdlemg44b
StepHypRef Expression
1 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl21 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → 𝐹𝑇)
3 simpl23 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simpl22 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → 𝐺𝑇)
5 cdlemg44.l . . . . . 6 = (le‘𝐾)
6 cdlemg44.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 cdlemg44.h . . . . . 6 𝐻 = (LHyp‘𝐾)
8 cdlemg44.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnel 37434 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
101, 4, 3, 9syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
11 simpr 488 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹𝑃) = 𝑃)
125, 6, 7, 8ltrnateq 37476 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
131, 2, 3, 10, 11, 12syl131anc 1380 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺𝑃))
1411fveq2d 6653 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐺𝑃))
1513, 14eqtr4d 2839 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐹𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
16 simpr 488 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐺𝑃) = 𝑃)
1716fveq2d 6653 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐹𝑃))
18 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl22 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → 𝐺𝑇)
20 simpl23 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
21 simpl21 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → 𝐹𝑇)
225, 6, 7, 8ltrnel 37434 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
2318, 21, 20, 22syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
245, 6, 7, 8ltrnateq 37476 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) ∧ (𝐺𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐹𝑃))
2518, 19, 20, 23, 16, 24syl131anc 1380 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐺‘(𝐹𝑃)) = (𝐹𝑃))
2617, 25eqtr4d 2839 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ (𝐺𝑃) = 𝑃) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
27 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simpl2 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)))
29 simprl 770 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
30 simprr 772 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐺𝑃) ≠ 𝑃)
31 simpl3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐹) ≠ (𝑅𝐺))
32 cdlemg44.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
337, 8, 32, 5, 6cdlemg44a 38026 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
3427, 28, 29, 30, 31, 33syl113anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
3515, 26, 34pm2.61da2ne 3078 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐹‘(𝐺𝑃)) = (𝐺‘(𝐹𝑃)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   class class class wbr 5033  ‘cfv 6328  lecple 16568  Atomscatm 36558  HLchlt 36645  LHypclh 37279  LTrncltrn 37396  trLctrl 37453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-map 8395  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-llines 36793  df-psubsp 36798  df-pmap 36799  df-padd 37091  df-lhyp 37283  df-laut 37284  df-ldil 37399  df-ltrn 37400  df-trl 37454 This theorem is referenced by:  cdlemg44  38028
 Copyright terms: Public domain W3C validator