![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6kN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 40210. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6k.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdh6k.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
mapdh6k.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
mapdh6kN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh.s | . . 3 ⊢ − = (-g‘𝑈) | |
8 | mapdhc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝐹 ∈ 𝐷) |
18 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
19 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
20 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
22 | mapdh.p | . . 3 ⊢ + = (+g‘𝑈) | |
23 | mapdh.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
24 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) | |
25 | mapdh6k.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
26 | 25 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑍 ∈ 𝑉) |
27 | mapdh6k.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
28 | 27 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 24, 26, 28 | mapdh6bN 40200 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
30 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
31 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝐹 ∈ 𝐷) |
32 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
33 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
34 | mapdh6k.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
35 | 34 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝑌 ∈ 𝑉) |
36 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → 𝑍 = 0 ) | |
37 | 27 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
38 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 30, 31, 32, 33, 22, 23, 35, 36, 37 | mapdh6cN 40201 | . 2 ⊢ ((𝜑 ∧ 𝑍 = 0 ) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
39 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
40 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝐹 ∈ 𝐷) |
41 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
42 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
43 | 27 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
44 | 34 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑌 ∈ 𝑉) |
45 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑌 ≠ 0 ) | |
46 | eldifsn 4747 | . . . 4 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 )) | |
47 | 44, 45, 46 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
48 | 25 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑍 ∈ 𝑉) |
49 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑍 ≠ 0 ) | |
50 | eldifsn 4747 | . . . 4 ⊢ (𝑍 ∈ (𝑉 ∖ { 0 }) ↔ (𝑍 ∈ 𝑉 ∧ 𝑍 ≠ 0 )) | |
51 | 48, 49, 50 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
52 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 39, 40, 41, 42, 22, 23, 43, 47, 51 | mapdh6jN 40208 | . 2 ⊢ ((𝜑 ∧ (𝑌 ≠ 0 ∧ 𝑍 ≠ 0 )) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
53 | 29, 38, 52 | pm2.61da2ne 3033 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 Vcvv 3445 ∖ cdif 3907 ifcif 4486 {csn 4586 {cpr 4588 〈cotp 4594 ↦ cmpt 5188 ‘cfv 6496 ℩crio 7312 (class class class)co 7357 1st c1st 7919 2nd c2nd 7920 Basecbs 17083 +gcplusg 17133 0gc0g 17321 -gcsg 18750 LSpanclspn 20432 HLchlt 37812 LHypclh 38447 DVecHcdvh 39541 LCDualclcd 40049 mapdcmpd 40087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-riotaBAD 37415 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-undef 8204 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-0g 17323 df-mre 17466 df-mrc 17467 df-acs 17469 df-proset 18184 df-poset 18202 df-plt 18219 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-p0 18314 df-p1 18315 df-lat 18321 df-clat 18388 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-cntz 19097 df-oppg 19124 df-lsm 19418 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-drng 20187 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lvec 20564 df-lsatoms 37438 df-lshyp 37439 df-lcv 37481 df-lfl 37520 df-lkr 37548 df-ldual 37586 df-oposet 37638 df-ol 37640 df-oml 37641 df-covers 37728 df-ats 37729 df-atl 37760 df-cvlat 37784 df-hlat 37813 df-llines 37961 df-lplanes 37962 df-lvols 37963 df-lines 37964 df-psubsp 37966 df-pmap 37967 df-padd 38259 df-lhyp 38451 df-laut 38452 df-ldil 38567 df-ltrn 38568 df-trl 38622 df-tgrp 39206 df-tendo 39218 df-edring 39220 df-dveca 39466 df-disoa 39492 df-dvech 39542 df-dib 39602 df-dic 39636 df-dih 39692 df-doch 39811 df-djh 39858 df-lcdual 40050 df-mapd 40088 |
This theorem is referenced by: mapdh6N 40210 |
Copyright terms: Public domain | W3C validator |