Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6kN Structured version   Visualization version   GIF version

Theorem mapdh6kN 40523
Description: Lemmma for mapdh6N 40524. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6k.y (𝜑𝑌𝑉)
mapdh6k.z (𝜑𝑍𝑉)
mapdh6k.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
mapdh6kN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh6kN
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . 3 𝑉 = (Base‘𝑈)
7 mapdh.s . . 3 = (-g𝑈)
8 mapdhc.o . . 3 0 = (0g𝑈)
9 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . 3 𝐷 = (Base‘𝐶)
12 mapdh.r . . 3 𝑅 = (-g𝐶)
13 mapdh.j . . 3 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 482 . . 3 ((𝜑𝑌 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdhc.f . . . 4 (𝜑𝐹𝐷)
1716adantr 482 . . 3 ((𝜑𝑌 = 0 ) → 𝐹𝐷)
18 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
1918adantr 482 . . 3 ((𝜑𝑌 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 482 . . 3 ((𝜑𝑌 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 mapdh.p . . 3 + = (+g𝑈)
23 mapdh.a . . 3 = (+g𝐶)
24 simpr 486 . . 3 ((𝜑𝑌 = 0 ) → 𝑌 = 0 )
25 mapdh6k.z . . . 4 (𝜑𝑍𝑉)
2625adantr 482 . . 3 ((𝜑𝑌 = 0 ) → 𝑍𝑉)
27 mapdh6k.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2827adantr 482 . . 3 ((𝜑𝑌 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 24, 26, 28mapdh6bN 40514 . 2 ((𝜑𝑌 = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3014adantr 482 . . 3 ((𝜑𝑍 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3116adantr 482 . . 3 ((𝜑𝑍 = 0 ) → 𝐹𝐷)
3218adantr 482 . . 3 ((𝜑𝑍 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
3320adantr 482 . . 3 ((𝜑𝑍 = 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
34 mapdh6k.y . . . 4 (𝜑𝑌𝑉)
3534adantr 482 . . 3 ((𝜑𝑍 = 0 ) → 𝑌𝑉)
36 simpr 486 . . 3 ((𝜑𝑍 = 0 ) → 𝑍 = 0 )
3727adantr 482 . . 3 ((𝜑𝑍 = 0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
381, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 30, 31, 32, 33, 22, 23, 35, 36, 37mapdh6cN 40515 . 2 ((𝜑𝑍 = 0 ) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3914adantr 482 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4016adantr 482 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝐹𝐷)
4118adantr 482 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
4220adantr 482 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑋 ∈ (𝑉 ∖ { 0 }))
4327adantr 482 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4434adantr 482 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑌𝑉)
45 simprl 770 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑌0 )
46 eldifsn 4786 . . . 4 (𝑌 ∈ (𝑉 ∖ { 0 }) ↔ (𝑌𝑉𝑌0 ))
4744, 45, 46sylanbrc 584 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4825adantr 482 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑍𝑉)
49 simprr 772 . . . 4 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑍0 )
50 eldifsn 4786 . . . 4 (𝑍 ∈ (𝑉 ∖ { 0 }) ↔ (𝑍𝑉𝑍0 ))
5148, 49, 50sylanbrc 584 . . 3 ((𝜑 ∧ (𝑌0𝑍0 )) → 𝑍 ∈ (𝑉 ∖ { 0 }))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 39, 40, 41, 42, 22, 23, 43, 47, 51mapdh6jN 40522 . 2 ((𝜑 ∧ (𝑌0𝑍0 )) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
5329, 38, 52pm2.61da2ne 3031 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  cdif 3943  ifcif 4524  {csn 4624  {cpr 4626  cotp 4632  cmpt 5227  cfv 6535  crio 7351  (class class class)co 7396  1st c1st 7960  2nd c2nd 7961  Basecbs 17131  +gcplusg 17184  0gc0g 17372  -gcsg 18808  LSpanclspn 20559  HLchlt 38126  LHypclh 38761  DVecHcdvh 39855  LCDualclcd 40363  mapdcmpd 40401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-riotaBAD 37729
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-undef 8245  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-sca 17200  df-vsca 17201  df-0g 17374  df-mre 17517  df-mrc 17518  df-acs 17520  df-proset 18235  df-poset 18253  df-plt 18270  df-lub 18286  df-glb 18287  df-join 18288  df-meet 18289  df-p0 18365  df-p1 18366  df-lat 18372  df-clat 18439  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-grp 18809  df-minusg 18810  df-sbg 18811  df-subg 18988  df-cntz 19166  df-oppg 19194  df-lsm 19488  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193  df-drng 20295  df-lmod 20450  df-lss 20520  df-lsp 20560  df-lvec 20691  df-lsatoms 37752  df-lshyp 37753  df-lcv 37795  df-lfl 37834  df-lkr 37862  df-ldual 37900  df-oposet 37952  df-ol 37954  df-oml 37955  df-covers 38042  df-ats 38043  df-atl 38074  df-cvlat 38098  df-hlat 38127  df-llines 38275  df-lplanes 38276  df-lvols 38277  df-lines 38278  df-psubsp 38280  df-pmap 38281  df-padd 38573  df-lhyp 38765  df-laut 38766  df-ldil 38881  df-ltrn 38882  df-trl 38936  df-tgrp 39520  df-tendo 39532  df-edring 39534  df-dveca 39780  df-disoa 39806  df-dvech 39856  df-dib 39916  df-dic 39950  df-dih 40006  df-doch 40125  df-djh 40172  df-lcdual 40364  df-mapd 40402
This theorem is referenced by:  mapdh6N  40524
  Copyright terms: Public domain W3C validator