Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Structured version   Visualization version   GIF version

Theorem pmodlem2 39826
Description: Lemma for pmod1i 39827. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))

Proof of Theorem pmodlem2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋 = ∅)
21oveq1d 7368 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = (∅ + 𝑌))
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
4 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑌𝐴)
5 pmodlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 pmodlem.p . . . . . . 7 + = (+𝑃𝐾)
75, 6padd02 39791 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (∅ + 𝑌) = 𝑌)
83, 4, 7syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (∅ + 𝑌) = 𝑌)
92, 8eqtrd 2764 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
109ineq1d 4172 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑌𝑍))
11 ssinss1 4199 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
124, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ 𝐴)
13 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋𝐴)
145, 6sspadd2 39795 . . . 4 ((𝐾 ∈ HL ∧ (𝑌𝑍) ⊆ 𝐴𝑋𝐴) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
153, 12, 13, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
1610, 15eqsstrd 3972 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
17 oveq2 7361 . . . . 5 (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅))
18 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
19 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝑋𝐴)
205, 6padd01 39790 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 + ∅) = 𝑋)
2118, 19, 20syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑋 + ∅) = 𝑋)
2217, 21sylan9eqr 2786 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋 + 𝑌) = 𝑋)
2322ineq1d 4172 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋𝑍))
24 inss1 4190 . . . 4 (𝑋𝑍) ⊆ 𝑋
25 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝐾 ∈ HL)
26 simpl21 1252 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋𝐴)
27 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑌𝐴)
2827, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑌𝑍) ⊆ 𝐴)
295, 6sspadd1 39794 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3025, 26, 28, 29syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3124, 30sstrid 3949 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋𝑍) ⊆ (𝑋 + (𝑌𝑍)))
3223, 31eqsstrd 3972 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
33 elin 3921 . . . 4 (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) ↔ (𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍))
34 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ HL)
3534hllatd 39342 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ Lat)
36 simpl21 1252 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑋𝐴)
37 simpl22 1253 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑌𝐴)
38 simprl 770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
39 pmodlem.l . . . . . . . . . 10 = (le‘𝐾)
40 pmodlem.j . . . . . . . . . 10 = (join‘𝐾)
4139, 40, 5, 6elpaddn0 39779 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
4235, 36, 37, 38, 41syl31anc 1375 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
43 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝐾 ∈ HL)
44 simpl21 1252 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝐴)
45 simpl22 1253 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑌𝐴)
46 simpl23 1254 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑍𝑆)
47 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝑍)
48 simpr1 1195 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝𝑍)
49 simpr2l 1233 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑞𝑋)
50 simpr2r 1234 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑟𝑌)
51 simpr3 1197 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 (𝑞 𝑟))
52 pmodlem.s . . . . . . . . . . . . . . 15 𝑆 = (PSubSp‘𝐾)
5339, 40, 5, 52, 6pmodlem1 39825 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
5443, 44, 45, 46, 47, 48, 49, 50, 51, 53syl333anc 1404 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
55543exp2 1355 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑝𝑍 → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
5655imp 406 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))))
5756rexlimdvv 3185 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5857adantld 490 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5958adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6042, 59sylbid 240 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6160exp32 420 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝𝑍 → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6261com34 91 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝 ∈ (𝑋 + 𝑌) → (𝑝𝑍𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6362imp4b 421 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6433, 63biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6564ssrdv 3943 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
6616, 32, 65pm2.61da2ne 3013 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cin 3904  wss 3905  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Latclat 18355  Atomscatm 39241  HLchlt 39328  PSubSpcpsubsp 39475  +𝑃cpadd 39774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-psubsp 39482  df-padd 39775
This theorem is referenced by:  pmod1i  39827
  Copyright terms: Public domain W3C validator