Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Structured version   Visualization version   GIF version

Theorem pmodlem2 39849
Description: Lemma for pmod1i 39850. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))

Proof of Theorem pmodlem2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋 = ∅)
21oveq1d 7446 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = (∅ + 𝑌))
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
4 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑌𝐴)
5 pmodlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 pmodlem.p . . . . . . 7 + = (+𝑃𝐾)
75, 6padd02 39814 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (∅ + 𝑌) = 𝑌)
83, 4, 7syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (∅ + 𝑌) = 𝑌)
92, 8eqtrd 2777 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
109ineq1d 4219 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑌𝑍))
11 ssinss1 4246 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
124, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ 𝐴)
13 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋𝐴)
145, 6sspadd2 39818 . . . 4 ((𝐾 ∈ HL ∧ (𝑌𝑍) ⊆ 𝐴𝑋𝐴) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
153, 12, 13, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
1610, 15eqsstrd 4018 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
17 oveq2 7439 . . . . 5 (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅))
18 simp1 1137 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
19 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝑋𝐴)
205, 6padd01 39813 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 + ∅) = 𝑋)
2118, 19, 20syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑋 + ∅) = 𝑋)
2217, 21sylan9eqr 2799 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋 + 𝑌) = 𝑋)
2322ineq1d 4219 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋𝑍))
24 inss1 4237 . . . 4 (𝑋𝑍) ⊆ 𝑋
25 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝐾 ∈ HL)
26 simpl21 1252 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋𝐴)
27 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑌𝐴)
2827, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑌𝑍) ⊆ 𝐴)
295, 6sspadd1 39817 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3025, 26, 28, 29syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3124, 30sstrid 3995 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋𝑍) ⊆ (𝑋 + (𝑌𝑍)))
3223, 31eqsstrd 4018 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
33 elin 3967 . . . 4 (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) ↔ (𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍))
34 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ HL)
3534hllatd 39365 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ Lat)
36 simpl21 1252 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑋𝐴)
37 simpl22 1253 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑌𝐴)
38 simprl 771 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
39 pmodlem.l . . . . . . . . . 10 = (le‘𝐾)
40 pmodlem.j . . . . . . . . . 10 = (join‘𝐾)
4139, 40, 5, 6elpaddn0 39802 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
4235, 36, 37, 38, 41syl31anc 1375 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
43 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝐾 ∈ HL)
44 simpl21 1252 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝐴)
45 simpl22 1253 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑌𝐴)
46 simpl23 1254 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑍𝑆)
47 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝑍)
48 simpr1 1195 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝𝑍)
49 simpr2l 1233 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑞𝑋)
50 simpr2r 1234 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑟𝑌)
51 simpr3 1197 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 (𝑞 𝑟))
52 pmodlem.s . . . . . . . . . . . . . . 15 𝑆 = (PSubSp‘𝐾)
5339, 40, 5, 52, 6pmodlem1 39848 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
5443, 44, 45, 46, 47, 48, 49, 50, 51, 53syl333anc 1404 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
55543exp2 1355 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑝𝑍 → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
5655imp 406 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))))
5756rexlimdvv 3212 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5857adantld 490 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5958adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6042, 59sylbid 240 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6160exp32 420 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝𝑍 → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6261com34 91 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝 ∈ (𝑋 + 𝑌) → (𝑝𝑍𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6362imp4b 421 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6433, 63biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6564ssrdv 3989 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
6616, 32, 65pm2.61da2ne 3030 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cin 3950  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  Latclat 18476  Atomscatm 39264  HLchlt 39351  PSubSpcpsubsp 39498  +𝑃cpadd 39797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-psubsp 39505  df-padd 39798
This theorem is referenced by:  pmod1i  39850
  Copyright terms: Public domain W3C validator