Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Structured version   Visualization version   GIF version

Theorem pmodlem2 38310
Description: Lemma for pmod1i 38311. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))

Proof of Theorem pmodlem2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋 = ∅)
21oveq1d 7372 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = (∅ + 𝑌))
3 simpl1 1191 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
4 simpl22 1252 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑌𝐴)
5 pmodlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 pmodlem.p . . . . . . 7 + = (+𝑃𝐾)
75, 6padd02 38275 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (∅ + 𝑌) = 𝑌)
83, 4, 7syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (∅ + 𝑌) = 𝑌)
92, 8eqtrd 2776 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
109ineq1d 4171 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑌𝑍))
11 ssinss1 4197 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
124, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ 𝐴)
13 simpl21 1251 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋𝐴)
145, 6sspadd2 38279 . . . 4 ((𝐾 ∈ HL ∧ (𝑌𝑍) ⊆ 𝐴𝑋𝐴) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
153, 12, 13, 14syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
1610, 15eqsstrd 3982 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
17 oveq2 7365 . . . . 5 (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅))
18 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
19 simp21 1206 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝑋𝐴)
205, 6padd01 38274 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 + ∅) = 𝑋)
2118, 19, 20syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑋 + ∅) = 𝑋)
2217, 21sylan9eqr 2798 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋 + 𝑌) = 𝑋)
2322ineq1d 4171 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋𝑍))
24 inss1 4188 . . . 4 (𝑋𝑍) ⊆ 𝑋
25 simpl1 1191 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝐾 ∈ HL)
26 simpl21 1251 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋𝐴)
27 simpl22 1252 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑌𝐴)
2827, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑌𝑍) ⊆ 𝐴)
295, 6sspadd1 38278 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3025, 26, 28, 29syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3124, 30sstrid 3955 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋𝑍) ⊆ (𝑋 + (𝑌𝑍)))
3223, 31eqsstrd 3982 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
33 elin 3926 . . . 4 (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) ↔ (𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍))
34 simpl1 1191 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ HL)
3534hllatd 37826 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ Lat)
36 simpl21 1251 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑋𝐴)
37 simpl22 1252 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑌𝐴)
38 simprl 769 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
39 pmodlem.l . . . . . . . . . 10 = (le‘𝐾)
40 pmodlem.j . . . . . . . . . 10 = (join‘𝐾)
4139, 40, 5, 6elpaddn0 38263 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
4235, 36, 37, 38, 41syl31anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
43 simpl1 1191 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝐾 ∈ HL)
44 simpl21 1251 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝐴)
45 simpl22 1252 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑌𝐴)
46 simpl23 1253 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑍𝑆)
47 simpl3 1193 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝑍)
48 simpr1 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝𝑍)
49 simpr2l 1232 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑞𝑋)
50 simpr2r 1233 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑟𝑌)
51 simpr3 1196 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 (𝑞 𝑟))
52 pmodlem.s . . . . . . . . . . . . . . 15 𝑆 = (PSubSp‘𝐾)
5339, 40, 5, 52, 6pmodlem1 38309 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
5443, 44, 45, 46, 47, 48, 49, 50, 51, 53syl333anc 1402 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
55543exp2 1354 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑝𝑍 → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
5655imp 407 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))))
5756rexlimdvv 3204 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5857adantld 491 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5958adantrl 714 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6042, 59sylbid 239 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6160exp32 421 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝𝑍 → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6261com34 91 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝 ∈ (𝑋 + 𝑌) → (𝑝𝑍𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6362imp4b 422 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6433, 63biimtrid 241 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6564ssrdv 3950 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
6616, 32, 65pm2.61da2ne 3033 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  lecple 17140  joincjn 18200  Latclat 18320  Atomscatm 37725  HLchlt 37812  PSubSpcpsubsp 37959  +𝑃cpadd 38258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-psubsp 37966  df-padd 38259
This theorem is referenced by:  pmod1i  38311
  Copyright terms: Public domain W3C validator