Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Structured version   Visualization version   GIF version

Theorem pmodlem2 39866
Description: Lemma for pmod1i 39867. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))

Proof of Theorem pmodlem2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋 = ∅)
21oveq1d 7420 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = (∅ + 𝑌))
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
4 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑌𝐴)
5 pmodlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 pmodlem.p . . . . . . 7 + = (+𝑃𝐾)
75, 6padd02 39831 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (∅ + 𝑌) = 𝑌)
83, 4, 7syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (∅ + 𝑌) = 𝑌)
92, 8eqtrd 2770 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
109ineq1d 4194 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑌𝑍))
11 ssinss1 4221 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
124, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ 𝐴)
13 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋𝐴)
145, 6sspadd2 39835 . . . 4 ((𝐾 ∈ HL ∧ (𝑌𝑍) ⊆ 𝐴𝑋𝐴) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
153, 12, 13, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
1610, 15eqsstrd 3993 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
17 oveq2 7413 . . . . 5 (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅))
18 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
19 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝑋𝐴)
205, 6padd01 39830 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 + ∅) = 𝑋)
2118, 19, 20syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑋 + ∅) = 𝑋)
2217, 21sylan9eqr 2792 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋 + 𝑌) = 𝑋)
2322ineq1d 4194 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋𝑍))
24 inss1 4212 . . . 4 (𝑋𝑍) ⊆ 𝑋
25 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝐾 ∈ HL)
26 simpl21 1252 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋𝐴)
27 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑌𝐴)
2827, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑌𝑍) ⊆ 𝐴)
295, 6sspadd1 39834 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3025, 26, 28, 29syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3124, 30sstrid 3970 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋𝑍) ⊆ (𝑋 + (𝑌𝑍)))
3223, 31eqsstrd 3993 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
33 elin 3942 . . . 4 (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) ↔ (𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍))
34 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ HL)
3534hllatd 39382 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ Lat)
36 simpl21 1252 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑋𝐴)
37 simpl22 1253 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑌𝐴)
38 simprl 770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
39 pmodlem.l . . . . . . . . . 10 = (le‘𝐾)
40 pmodlem.j . . . . . . . . . 10 = (join‘𝐾)
4139, 40, 5, 6elpaddn0 39819 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
4235, 36, 37, 38, 41syl31anc 1375 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
43 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝐾 ∈ HL)
44 simpl21 1252 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝐴)
45 simpl22 1253 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑌𝐴)
46 simpl23 1254 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑍𝑆)
47 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝑍)
48 simpr1 1195 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝𝑍)
49 simpr2l 1233 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑞𝑋)
50 simpr2r 1234 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑟𝑌)
51 simpr3 1197 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 (𝑞 𝑟))
52 pmodlem.s . . . . . . . . . . . . . . 15 𝑆 = (PSubSp‘𝐾)
5339, 40, 5, 52, 6pmodlem1 39865 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
5443, 44, 45, 46, 47, 48, 49, 50, 51, 53syl333anc 1404 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
55543exp2 1355 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑝𝑍 → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
5655imp 406 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))))
5756rexlimdvv 3197 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5857adantld 490 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5958adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6042, 59sylbid 240 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6160exp32 420 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝𝑍 → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6261com34 91 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝 ∈ (𝑋 + 𝑌) → (𝑝𝑍𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6362imp4b 421 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6433, 63biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6564ssrdv 3964 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
6616, 32, 65pm2.61da2ne 3020 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  Latclat 18441  Atomscatm 39281  HLchlt 39368  PSubSpcpsubsp 39515  +𝑃cpadd 39814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-psubsp 39522  df-padd 39815
This theorem is referenced by:  pmod1i  39867
  Copyright terms: Public domain W3C validator