Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodlem2 Structured version   Visualization version   GIF version

Theorem pmodlem2 39885
Description: Lemma for pmod1i 39886. (Contributed by NM, 9-Mar-2012.)
Hypotheses
Ref Expression
pmodlem.l = (le‘𝐾)
pmodlem.j = (join‘𝐾)
pmodlem.a 𝐴 = (Atoms‘𝐾)
pmodlem.s 𝑆 = (PSubSp‘𝐾)
pmodlem.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodlem2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))

Proof of Theorem pmodlem2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋 = ∅)
21oveq1d 7361 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = (∅ + 𝑌))
3 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
4 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑌𝐴)
5 pmodlem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 pmodlem.p . . . . . . 7 + = (+𝑃𝐾)
75, 6padd02 39850 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (∅ + 𝑌) = 𝑌)
83, 4, 7syl2anc 584 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (∅ + 𝑌) = 𝑌)
92, 8eqtrd 2766 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
109ineq1d 4169 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑌𝑍))
11 ssinss1 4196 . . . . 5 (𝑌𝐴 → (𝑌𝑍) ⊆ 𝐴)
124, 11syl 17 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ 𝐴)
13 simpl21 1252 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → 𝑋𝐴)
145, 6sspadd2 39854 . . . 4 ((𝐾 ∈ HL ∧ (𝑌𝑍) ⊆ 𝐴𝑋𝐴) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
153, 12, 13, 14syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → (𝑌𝑍) ⊆ (𝑋 + (𝑌𝑍)))
1610, 15eqsstrd 3969 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑋 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
17 oveq2 7354 . . . . 5 (𝑌 = ∅ → (𝑋 + 𝑌) = (𝑋 + ∅))
18 simp1 1136 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝐾 ∈ HL)
19 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → 𝑋𝐴)
205, 6padd01 39849 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 + ∅) = 𝑋)
2118, 19, 20syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑋 + ∅) = 𝑋)
2217, 21sylan9eqr 2788 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋 + 𝑌) = 𝑋)
2322ineq1d 4169 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋𝑍))
24 inss1 4187 . . . 4 (𝑋𝑍) ⊆ 𝑋
25 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝐾 ∈ HL)
26 simpl21 1252 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋𝐴)
27 simpl22 1253 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑌𝐴)
2827, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑌𝑍) ⊆ 𝐴)
295, 6sspadd1 39853 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝑌𝑍) ⊆ 𝐴) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3025, 26, 28, 29syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → 𝑋 ⊆ (𝑋 + (𝑌𝑍)))
3124, 30sstrid 3946 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → (𝑋𝑍) ⊆ (𝑋 + (𝑌𝑍)))
3223, 31eqsstrd 3969 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑌 = ∅) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
33 elin 3918 . . . 4 (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) ↔ (𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍))
34 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ HL)
3534hllatd 39402 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝐾 ∈ Lat)
36 simpl21 1252 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑋𝐴)
37 simpl22 1253 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → 𝑌𝐴)
38 simprl 770 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
39 pmodlem.l . . . . . . . . . 10 = (le‘𝐾)
40 pmodlem.j . . . . . . . . . 10 = (join‘𝐾)
4139, 40, 5, 6elpaddn0 39838 . . . . . . . . 9 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
4235, 36, 37, 38, 41syl31anc 1375 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) ↔ (𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟))))
43 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝐾 ∈ HL)
44 simpl21 1252 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝐴)
45 simpl22 1253 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑌𝐴)
46 simpl23 1254 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑍𝑆)
47 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑋𝑍)
48 simpr1 1195 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝𝑍)
49 simpr2l 1233 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑞𝑋)
50 simpr2r 1234 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑟𝑌)
51 simpr3 1197 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 (𝑞 𝑟))
52 pmodlem.s . . . . . . . . . . . . . . 15 𝑆 = (PSubSp‘𝐾)
5339, 40, 5, 52, 6pmodlem1 39884 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑍𝑆𝑋𝑍𝑝𝑍) ∧ (𝑞𝑋𝑟𝑌𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
5443, 44, 45, 46, 47, 48, 49, 50, 51, 53syl333anc 1404 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑝𝑍 ∧ (𝑞𝑋𝑟𝑌) ∧ 𝑝 (𝑞 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))
55543exp2 1355 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → (𝑝𝑍 → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
5655imp 406 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑞𝑋𝑟𝑌) → (𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍)))))
5756rexlimdvv 3188 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → (∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5857adantld 490 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ 𝑝𝑍) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
5958adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → ((𝑝𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6042, 59sylbid 240 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ∧ 𝑝𝑍)) → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6160exp32 420 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝𝑍 → (𝑝 ∈ (𝑋 + 𝑌) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6261com34 91 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) → (𝑝 ∈ (𝑋 + 𝑌) → (𝑝𝑍𝑝 ∈ (𝑋 + (𝑌𝑍))))))
6362imp4b 421 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑝 ∈ (𝑋 + 𝑌) ∧ 𝑝𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6433, 63biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑝 ∈ ((𝑋 + 𝑌) ∩ 𝑍) → 𝑝 ∈ (𝑋 + (𝑌𝑍))))
6564ssrdv 3940 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) ∧ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
6616, 32, 65pm2.61da2ne 3016 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝑆) ∧ 𝑋𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cin 3901  wss 3902  c0 4283   class class class wbr 5091  cfv 6481  (class class class)co 7346  lecple 17165  joincjn 18214  Latclat 18334  Atomscatm 39301  HLchlt 39388  PSubSpcpsubsp 39534  +𝑃cpadd 39833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-lat 18335  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-psubsp 39541  df-padd 39834
This theorem is referenced by:  pmod1i  39886
  Copyright terms: Public domain W3C validator