| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnrmnrm | Structured version Visualization version GIF version | ||
| Description: A perfectly normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| pnrmnrm | ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispnrm 23254 | . 2 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑥 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑥))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 ∩ cint 4895 ↦ cmpt 5170 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℕcn 12125 Clsdccld 22931 Nrmcnrm 23225 PNrmcpnrm 23227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 df-iota 6437 df-fv 6489 df-ov 7349 df-pnrm 23234 |
| This theorem is referenced by: pnrmtop 23256 |
| Copyright terms: Public domain | W3C validator |