MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmnrm Structured version   Visualization version   GIF version

Theorem pnrmnrm 23283
Description: A perfectly normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmnrm (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)

Proof of Theorem pnrmnrm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ispnrm 23282 . 2 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑥 ∈ (𝐽m ℕ) ↦ ran 𝑥)))
21simplbi 497 1 (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3931   cint 4927  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  m cmap 8845  cn 12245  Clsdccld 22959  Nrmcnrm 23253  PNrmcpnrm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-cnv 5667  df-dm 5669  df-rn 5670  df-iota 6489  df-fv 6544  df-ov 7413  df-pnrm 23262
This theorem is referenced by:  pnrmtop  23284
  Copyright terms: Public domain W3C validator