MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmnrm Structured version   Visualization version   GIF version

Theorem pnrmnrm 23227
Description: A perfectly normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmnrm (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)

Proof of Theorem pnrmnrm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ispnrm 23226 . 2 (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑥 ∈ (𝐽m ℕ) ↦ ran 𝑥)))
21simplbi 497 1 (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914   cint 4910  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  m cmap 8799  cn 12186  Clsdccld 22903  Nrmcnrm 23197  PNrmcpnrm 23199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-cnv 5646  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519  df-ov 7390  df-pnrm 23206
This theorem is referenced by:  pnrmtop  23228
  Copyright terms: Public domain W3C validator