Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnrmnrm | Structured version Visualization version GIF version |
Description: A perfectly normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
pnrmnrm | ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispnrm 22103 | . 2 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑥 ∈ (𝐽 ↑m ℕ) ↦ ∩ ran 𝑥))) | |
2 | 1 | simplbi 501 | 1 ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ⊆ wss 3853 ∩ cint 4846 ↦ cmpt 5120 ran crn 5536 ‘cfv 6350 (class class class)co 7183 ↑m cmap 8450 ℕcn 11729 Clsdccld 21780 Nrmcnrm 22074 PNrmcpnrm 22076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rab 3063 df-v 3402 df-un 3858 df-in 3860 df-ss 3870 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-cnv 5543 df-dm 5545 df-rn 5546 df-iota 6308 df-fv 6358 df-ov 7186 df-pnrm 22083 |
This theorem is referenced by: pnrmtop 22105 |
Copyright terms: Public domain | W3C validator |