| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnrmtop | Structured version Visualization version GIF version | ||
| Description: A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| pnrmtop | ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnrmnrm 23283 | . 2 ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Nrm) | |
| 2 | nrmtop 23279 | . 2 ⊢ (𝐽 ∈ Nrm → 𝐽 ∈ Top) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐽 ∈ PNrm → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Topctop 22836 Nrmcnrm 23253 PNrmcpnrm 23255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 df-ov 7413 df-nrm 23260 df-pnrm 23262 |
| This theorem is referenced by: pnrmopn 23286 |
| Copyright terms: Public domain | W3C validator |