MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmtop Structured version   Visualization version   GIF version

Theorem pnrmtop 23262
Description: A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmtop (𝐽 ∈ PNrm → 𝐽 ∈ Top)

Proof of Theorem pnrmtop
StepHypRef Expression
1 pnrmnrm 23261 . 2 (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)
2 nrmtop 23257 . 2 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
31, 2syl 17 1 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Topctop 22814  Nrmcnrm 23231  PNrmcpnrm 23233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-cnv 5627  df-dm 5629  df-rn 5630  df-iota 6443  df-fv 6495  df-ov 7355  df-nrm 23238  df-pnrm 23240
This theorem is referenced by:  pnrmopn  23264
  Copyright terms: Public domain W3C validator