MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmtop Structured version   Visualization version   GIF version

Theorem pnrmtop 22400
Description: A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmtop (𝐽 ∈ PNrm → 𝐽 ∈ Top)

Proof of Theorem pnrmtop
StepHypRef Expression
1 pnrmnrm 22399 . 2 (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)
2 nrmtop 22395 . 2 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
31, 2syl 17 1 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Topctop 21950  Nrmcnrm 22369  PNrmcpnrm 22371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-cnv 5588  df-dm 5590  df-rn 5591  df-iota 6376  df-fv 6426  df-ov 7258  df-nrm 22376  df-pnrm 22378
This theorem is referenced by:  pnrmopn  22402
  Copyright terms: Public domain W3C validator