MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnrmtop Structured version   Visualization version   GIF version

Theorem pnrmtop 21474
Description: A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
pnrmtop (𝐽 ∈ PNrm → 𝐽 ∈ Top)

Proof of Theorem pnrmtop
StepHypRef Expression
1 pnrmnrm 21473 . 2 (𝐽 ∈ PNrm → 𝐽 ∈ Nrm)
2 nrmtop 21469 . 2 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
31, 2syl 17 1 (𝐽 ∈ PNrm → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  Topctop 21026  Nrmcnrm 21443  PNrmcpnrm 21445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-cnv 5320  df-dm 5322  df-rn 5323  df-iota 6064  df-fv 6109  df-ov 6881  df-nrm 21450  df-pnrm 21452
This theorem is referenced by:  pnrmopn  21476
  Copyright terms: Public domain W3C validator