Step | Hyp | Ref
| Expression |
1 | | ltrelnq 10682 |
. . . . 5
⊢
<Q ⊆ (Q ×
Q) |
2 | 1 | brel 5652 |
. . . 4
⊢
(1Q <Q 𝐵 →
(1Q ∈ Q ∧ 𝐵 ∈ Q)) |
3 | 2 | simprd 496 |
. . 3
⊢
(1Q <Q 𝐵 → 𝐵 ∈ Q) |
4 | 3 | adantl 482 |
. 2
⊢ ((𝐴 ∈ P ∧
1Q <Q 𝐵) → 𝐵 ∈ Q) |
5 | | breq2 5078 |
. . . . 5
⊢ (𝑏 = 𝐵 → (1Q
<Q 𝑏 ↔ 1Q
<Q 𝐵)) |
6 | 5 | anbi2d 629 |
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ P ∧
1Q <Q 𝑏) ↔ (𝐴 ∈ P ∧
1Q <Q 𝐵))) |
7 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (𝑥 ·Q 𝑏) = (𝑥 ·Q 𝐵)) |
8 | 7 | eleq1d 2823 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝑥 ·Q 𝑏) ∈ 𝐴 ↔ (𝑥 ·Q 𝐵) ∈ 𝐴)) |
9 | 8 | notbid 318 |
. . . . 5
⊢ (𝑏 = 𝐵 → (¬ (𝑥 ·Q 𝑏) ∈ 𝐴 ↔ ¬ (𝑥 ·Q 𝐵) ∈ 𝐴)) |
10 | 9 | rexbidv 3226 |
. . . 4
⊢ (𝑏 = 𝐵 → (∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝐵) ∈ 𝐴)) |
11 | 6, 10 | imbi12d 345 |
. . 3
⊢ (𝑏 = 𝐵 → (((𝐴 ∈ P ∧
1Q <Q 𝑏) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴) ↔ ((𝐴 ∈ P ∧
1Q <Q 𝐵) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝐵) ∈ 𝐴))) |
12 | | prn0 10745 |
. . . . . 6
⊢ (𝐴 ∈ P →
𝐴 ≠
∅) |
13 | | n0 4280 |
. . . . . 6
⊢ (𝐴 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝐴) |
14 | 12, 13 | sylib 217 |
. . . . 5
⊢ (𝐴 ∈ P →
∃𝑦 𝑦 ∈ 𝐴) |
15 | 14 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ P ∧
1Q <Q 𝑏) → ∃𝑦 𝑦 ∈ 𝐴) |
16 | | elprnq 10747 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝑦 ∈ 𝐴) → 𝑦 ∈ Q) |
17 | 16 | ad2ant2r 744 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → 𝑦 ∈ Q) |
18 | | mulidnq 10719 |
. . . . . . . . . 10
⊢ (𝑦 ∈ Q →
(𝑦
·Q 1Q) = 𝑦) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → (𝑦 ·Q
1Q) = 𝑦) |
20 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → 1Q
<Q 𝑏) |
21 | | ltmnq 10728 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ Q →
(1Q <Q 𝑏 ↔ (𝑦 ·Q
1Q) <Q (𝑦 ·Q 𝑏))) |
22 | 21 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Q ∧
1Q <Q 𝑏) → (𝑦 ·Q
1Q) <Q (𝑦 ·Q 𝑏)) |
23 | 17, 20, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → (𝑦 ·Q
1Q) <Q (𝑦 ·Q 𝑏)) |
24 | 19, 23 | eqbrtrrd 5098 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → 𝑦 <Q (𝑦
·Q 𝑏)) |
25 | 1 | brel 5652 |
. . . . . . . . . . . 12
⊢
(1Q <Q 𝑏 →
(1Q ∈ Q ∧ 𝑏 ∈ Q)) |
26 | 25 | simprd 496 |
. . . . . . . . . . 11
⊢
(1Q <Q 𝑏 → 𝑏 ∈ Q) |
27 | 26 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → 𝑏 ∈ Q) |
28 | | mulclnq 10703 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Q ∧
𝑏 ∈ Q)
→ (𝑦
·Q 𝑏) ∈ Q) |
29 | 17, 27, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → (𝑦 ·Q 𝑏) ∈
Q) |
30 | | ltexnq 10731 |
. . . . . . . . 9
⊢ ((𝑦
·Q 𝑏) ∈ Q → (𝑦 <Q
(𝑦
·Q 𝑏) ↔ ∃𝑧(𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏))) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → (𝑦 <Q (𝑦
·Q 𝑏) ↔ ∃𝑧(𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏))) |
32 | 24, 31 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → ∃𝑧(𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) |
33 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → 𝐴 ∈ P) |
34 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
35 | 34 | prlem934 10789 |
. . . . . . . . 9
⊢ (𝐴 ∈ P →
∃𝑥 ∈ 𝐴 ¬ (𝑥 +Q 𝑧) ∈ 𝐴) |
36 | 33, 35 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 +Q 𝑧) ∈ 𝐴) |
37 | 33 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ P) |
38 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → (𝑦 ·Q 𝑏) ∈ 𝐴) |
39 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 +Q
𝑧) = (𝑦 ·Q 𝑏) → ((𝑦 +Q 𝑧) ∈ 𝐴 ↔ (𝑦 ·Q 𝑏) ∈ 𝐴)) |
40 | 39 | biimparc 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑦
·Q 𝑏) ∈ 𝐴 ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → (𝑦 +Q 𝑧) ∈ 𝐴) |
41 | 38, 40 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → (𝑦 +Q 𝑧) ∈ 𝐴) |
42 | 41 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (𝑦 +Q 𝑧) ∈ 𝐴) |
43 | | elprnq 10747 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑥 ∈ 𝐴) → 𝑥 ∈ Q) |
44 | 33, 43 | sylan 580 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ Q) |
45 | | elprnq 10747 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ P ∧
(𝑦
+Q 𝑧) ∈ 𝐴) → (𝑦 +Q 𝑧) ∈
Q) |
46 | | addnqf 10704 |
. . . . . . . . . . . . . . . . . . 19
⊢
+Q :(Q ×
Q)⟶Q |
47 | 46 | fdmi 6612 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
+Q = (Q ×
Q) |
48 | | 0nnq 10680 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
∅ ∈ Q |
49 | 47, 48 | ndmovrcl 7458 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 +Q
𝑧) ∈ Q
→ (𝑦 ∈
Q ∧ 𝑧
∈ Q)) |
50 | 49 | simprd 496 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 +Q
𝑧) ∈ Q
→ 𝑧 ∈
Q) |
51 | 45, 50 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
(𝑦
+Q 𝑧) ∈ 𝐴) → 𝑧 ∈ Q) |
52 | 33, 41, 51 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → 𝑧 ∈ Q) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ Q) |
54 | | addclnq 10701 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑥
+Q 𝑧) ∈ Q) |
55 | 44, 53, 54 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (𝑥 +Q 𝑧) ∈
Q) |
56 | | prub 10750 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
(𝑦
+Q 𝑧) ∈ 𝐴) ∧ (𝑥 +Q 𝑧) ∈ Q) →
(¬ (𝑥
+Q 𝑧) ∈ 𝐴 → (𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧))) |
57 | 37, 42, 55, 56 | syl21anc 835 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (¬ (𝑥 +Q 𝑧) ∈ 𝐴 → (𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧))) |
58 | 27 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → 𝑏 ∈ Q) |
59 | | mulclnq 10703 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Q ∧
𝑏 ∈ Q)
→ (𝑥
·Q 𝑏) ∈ Q) |
60 | 44, 58, 59 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ·Q 𝑏) ∈
Q) |
61 | 17 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ Q) |
62 | | simplr 766 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) |
63 | | recclnq 10722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Q →
(*Q‘𝑦) ∈ Q) |
64 | | mulclnq 10703 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ Q ∧
(*Q‘𝑦) ∈ Q) → (𝑧
·Q (*Q‘𝑦)) ∈
Q) |
65 | 63, 64 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑧
·Q (*Q‘𝑦)) ∈
Q) |
66 | 65 | ancoms 459 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑧
·Q (*Q‘𝑦)) ∈
Q) |
67 | | ltmnq 10728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧
·Q (*Q‘𝑦)) ∈ Q →
(𝑦
<Q 𝑥 ↔ ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑦) <Q
((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦
<Q 𝑥 ↔ ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑦) <Q
((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
69 | | mulassnq 10715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧
·Q (*Q‘𝑦))
·Q 𝑦) = (𝑧 ·Q
((*Q‘𝑦) ·Q 𝑦)) |
70 | | mulcomnq 10709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((*Q‘𝑦) ·Q 𝑦) = (𝑦 ·Q
(*Q‘𝑦)) |
71 | 70 | oveq2i 7286 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧
·Q ((*Q‘𝑦)
·Q 𝑦)) = (𝑧 ·Q (𝑦
·Q (*Q‘𝑦))) |
72 | 69, 71 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧
·Q (*Q‘𝑦))
·Q 𝑦) = (𝑧 ·Q (𝑦
·Q (*Q‘𝑦))) |
73 | | recidnq 10721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ Q →
(𝑦
·Q (*Q‘𝑦)) =
1Q) |
74 | 73 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Q →
(𝑧
·Q (𝑦 ·Q
(*Q‘𝑦))) = (𝑧 ·Q
1Q)) |
75 | | mulidnq 10719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ Q →
(𝑧
·Q 1Q) = 𝑧) |
76 | 74, 75 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑧
·Q (𝑦 ·Q
(*Q‘𝑦))) = 𝑧) |
77 | 72, 76 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ ((𝑧
·Q (*Q‘𝑦))
·Q 𝑦) = 𝑧) |
78 | 77 | breq1d 5084 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (((𝑧
·Q (*Q‘𝑦))
·Q 𝑦) <Q ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥) ↔ 𝑧 <Q ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
79 | 68, 78 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦
<Q 𝑥 ↔ 𝑧 <Q ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
80 | 79 | adantll 711 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
𝑧 ∈ Q)
→ (𝑦
<Q 𝑥 ↔ 𝑧 <Q ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
81 | | mulnqf 10705 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
·Q :(Q ×
Q)⟶Q |
82 | 81 | fdmi 6612 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
·Q = (Q ×
Q) |
83 | 82, 48 | ndmovrcl 7458 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥
·Q 𝑏) ∈ Q → (𝑥 ∈ Q ∧
𝑏 ∈
Q)) |
84 | 83 | simpld 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥
·Q 𝑏) ∈ Q → 𝑥 ∈
Q) |
85 | | ltanq 10727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ Q →
(𝑧
<Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
+Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥)))) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥
·Q 𝑏) ∈ Q → (𝑧 <Q
((𝑧
·Q (*Q‘𝑦))
·Q 𝑥) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
+Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥)))) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
(𝑧
<Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
+Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥)))) |
88 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
89 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥
·Q (*Q‘𝑦)) ∈ V |
90 | | mulcomnq 10709 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢
·Q 𝑤) = (𝑤 ·Q 𝑢) |
91 | | distrnq 10717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢
·Q (𝑤 +Q 𝑣)) = ((𝑢 ·Q 𝑤) +Q
(𝑢
·Q 𝑣)) |
92 | 88, 34, 89, 90, 91 | caovdir 7506 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 +Q
𝑧)
·Q (𝑥 ·Q
(*Q‘𝑦))) = ((𝑦 ·Q (𝑥
·Q (*Q‘𝑦))) +Q
(𝑧
·Q (𝑥 ·Q
(*Q‘𝑦)))) |
93 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑥 ∈ V |
94 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(*Q‘𝑦) ∈ V |
95 | | mulassnq 10715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑢
·Q 𝑤) ·Q 𝑣) = (𝑢 ·Q (𝑤
·Q 𝑣)) |
96 | 88, 93, 94, 90, 95 | caov12 7500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦
·Q (𝑥 ·Q
(*Q‘𝑦))) = (𝑥 ·Q (𝑦
·Q (*Q‘𝑦))) |
97 | 73 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ Q →
(𝑥
·Q (𝑦 ·Q
(*Q‘𝑦))) = (𝑥 ·Q
1Q)) |
98 | | mulidnq 10719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ Q →
(𝑥
·Q 1Q) = 𝑥) |
99 | 84, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥
·Q 𝑏) ∈ Q → (𝑥
·Q 1Q) = 𝑥) |
100 | 97, 99 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
(𝑥
·Q (𝑦 ·Q
(*Q‘𝑦))) = 𝑥) |
101 | 96, 100 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
(𝑦
·Q (𝑥 ·Q
(*Q‘𝑦))) = 𝑥) |
102 | | mulcomnq 10709 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥
·Q (*Q‘𝑦)) =
((*Q‘𝑦) ·Q 𝑥) |
103 | 102 | oveq2i 7286 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧
·Q (𝑥 ·Q
(*Q‘𝑦))) = (𝑧 ·Q
((*Q‘𝑦) ·Q 𝑥)) |
104 | | mulassnq 10715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥) = (𝑧 ·Q
((*Q‘𝑦) ·Q 𝑥)) |
105 | 103, 104 | eqtr4i 2769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧
·Q (𝑥 ·Q
(*Q‘𝑦))) = ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥) |
106 | 105 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
(𝑧
·Q (𝑥 ·Q
(*Q‘𝑦))) = ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥)) |
107 | 101, 106 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
((𝑦
·Q (𝑥 ·Q
(*Q‘𝑦))) +Q (𝑧
·Q (𝑥 ·Q
(*Q‘𝑦)))) = (𝑥 +Q ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
108 | 92, 107 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))) = (𝑥 +Q ((𝑧
·Q (*Q‘𝑦))
·Q 𝑥))) |
109 | 108 | breq2d 5086 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
((𝑥
+Q 𝑧) <Q ((𝑦 +Q
𝑧)
·Q (𝑥 ·Q
(*Q‘𝑦))) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
+Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥)))) |
110 | 87, 109 | bitr4d 281 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
(𝑧
<Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥) ↔ (𝑥 +Q 𝑧) <Q
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))))) |
111 | 110 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
𝑧 ∈ Q)
→ (𝑧
<Q ((𝑧 ·Q
(*Q‘𝑦)) ·Q 𝑥) ↔ (𝑥 +Q 𝑧) <Q
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))))) |
112 | 80, 111 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
𝑧 ∈ Q)
→ (𝑦
<Q 𝑥 ↔ (𝑥 +Q 𝑧) <Q
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))))) |
113 | 112 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
(𝑧 ∈ Q
∧ (𝑦
+Q 𝑧) = (𝑦 ·Q 𝑏))) → (𝑦 <Q 𝑥 ↔ (𝑥 +Q 𝑧) <Q
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))))) |
114 | | ltanq 10727 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ Q →
(𝑦
<Q 𝑥 ↔ (𝑧 +Q 𝑦) <Q
(𝑧
+Q 𝑥))) |
115 | | addcomnq 10707 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 +Q
𝑦) = (𝑦 +Q 𝑧) |
116 | | addcomnq 10707 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 +Q
𝑥) = (𝑥 +Q 𝑧) |
117 | 115, 116 | breq12i 5083 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 +Q
𝑦)
<Q (𝑧 +Q 𝑥) ↔ (𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧)) |
118 | 114, 117 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ Q →
(𝑦
<Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧))) |
119 | 118 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
(𝑧 ∈ Q
∧ (𝑦
+Q 𝑧) = (𝑦 ·Q 𝑏))) → (𝑦 <Q 𝑥 ↔ (𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧))) |
120 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 +Q
𝑧) = (𝑦 ·Q 𝑏) → ((𝑦 +Q 𝑧)
·Q (𝑥 ·Q
(*Q‘𝑦))) = ((𝑦 ·Q 𝑏)
·Q (𝑥 ·Q
(*Q‘𝑦)))) |
121 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
122 | 88, 121, 93, 90, 95, 94 | caov411 7504 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦
·Q 𝑏) ·Q (𝑥
·Q (*Q‘𝑦))) = ((𝑥 ·Q 𝑏)
·Q (𝑦 ·Q
(*Q‘𝑦))) |
123 | 73 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ Q →
((𝑥
·Q 𝑏) ·Q (𝑦
·Q (*Q‘𝑦))) = ((𝑥 ·Q 𝑏)
·Q
1Q)) |
124 | | mulidnq 10719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥
·Q 𝑏) ∈ Q → ((𝑥
·Q 𝑏) ·Q
1Q) = (𝑥 ·Q 𝑏)) |
125 | 123, 124 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
((𝑥
·Q 𝑏) ·Q (𝑦
·Q (*Q‘𝑦))) = (𝑥 ·Q 𝑏)) |
126 | 122, 125 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) →
((𝑦
·Q 𝑏) ·Q (𝑥
·Q (*Q‘𝑦))) = (𝑥 ·Q 𝑏)) |
127 | 120, 126 | sylan9eqr 2800 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
(𝑦
+Q 𝑧) = (𝑦 ·Q 𝑏)) → ((𝑦 +Q 𝑧)
·Q (𝑥 ·Q
(*Q‘𝑦))) = (𝑥 ·Q 𝑏)) |
128 | 127 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
(𝑦
+Q 𝑧) = (𝑦 ·Q 𝑏)) → ((𝑥 +Q 𝑧) <Q
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏))) |
129 | 128 | adantrl 713 |
. . . . . . . . . . . . 13
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
(𝑧 ∈ Q
∧ (𝑦
+Q 𝑧) = (𝑦 ·Q 𝑏))) → ((𝑥 +Q 𝑧) <Q
((𝑦
+Q 𝑧) ·Q (𝑥
·Q (*Q‘𝑦))) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏))) |
130 | 113, 119,
129 | 3bitr3d 309 |
. . . . . . . . . . . 12
⊢ ((((𝑥
·Q 𝑏) ∈ Q ∧ 𝑦 ∈ Q) ∧
(𝑧 ∈ Q
∧ (𝑦
+Q 𝑧) = (𝑦 ·Q 𝑏))) → ((𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏))) |
131 | 60, 61, 53, 62, 130 | syl22anc 836 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → ((𝑦 +Q 𝑧) <Q
(𝑥
+Q 𝑧) ↔ (𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏))) |
132 | 57, 131 | sylibd 238 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (¬ (𝑥 +Q 𝑧) ∈ 𝐴 → (𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏))) |
133 | | prcdnq 10749 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
(𝑥
·Q 𝑏) ∈ 𝐴) → ((𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏) → (𝑥 +Q 𝑧) ∈ 𝐴)) |
134 | 133 | impancom 452 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
(𝑥
+Q 𝑧) <Q (𝑥
·Q 𝑏)) → ((𝑥 ·Q 𝑏) ∈ 𝐴 → (𝑥 +Q 𝑧) ∈ 𝐴)) |
135 | 134 | con3d 152 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
(𝑥
+Q 𝑧) <Q (𝑥
·Q 𝑏)) → (¬ (𝑥 +Q 𝑧) ∈ 𝐴 → ¬ (𝑥 ·Q 𝑏) ∈ 𝐴)) |
136 | 135 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ P →
((𝑥
+Q 𝑧) <Q (𝑥
·Q 𝑏) → (¬ (𝑥 +Q 𝑧) ∈ 𝐴 → ¬ (𝑥 ·Q 𝑏) ∈ 𝐴))) |
137 | 136 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ P →
(¬ (𝑥
+Q 𝑧) ∈ 𝐴 → ((𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏) → ¬ (𝑥 ·Q 𝑏) ∈ 𝐴))) |
138 | 37, 137 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (¬ (𝑥 +Q 𝑧) ∈ 𝐴 → ((𝑥 +Q 𝑧) <Q
(𝑥
·Q 𝑏) → ¬ (𝑥 ·Q 𝑏) ∈ 𝐴))) |
139 | 132, 138 | mpdd 43 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
P ∧ 1Q
<Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) ∧ 𝑥 ∈ 𝐴) → (¬ (𝑥 +Q 𝑧) ∈ 𝐴 → ¬ (𝑥 ·Q 𝑏) ∈ 𝐴)) |
140 | 139 | reximdva 3203 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → (∃𝑥 ∈ 𝐴 ¬ (𝑥 +Q 𝑧) ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴)) |
141 | 36, 140 | mpd 15 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) ∧ (𝑦 +Q 𝑧) = (𝑦 ·Q 𝑏)) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴) |
142 | 32, 141 | exlimddv 1938 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ (𝑦 ∈ 𝐴 ∧ (𝑦 ·Q 𝑏) ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴) |
143 | 142 | expr 457 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ 𝑦 ∈ 𝐴) → ((𝑦 ·Q 𝑏) ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴)) |
144 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ·Q 𝑏) = (𝑦 ·Q 𝑏)) |
145 | 144 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ·Q 𝑏) ∈ 𝐴 ↔ (𝑦 ·Q 𝑏) ∈ 𝐴)) |
146 | 145 | notbid 318 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (¬ (𝑥 ·Q 𝑏) ∈ 𝐴 ↔ ¬ (𝑦 ·Q 𝑏) ∈ 𝐴)) |
147 | 146 | rspcev 3561 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ ¬ (𝑦 ·Q 𝑏) ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴) |
148 | 147 | ex 413 |
. . . . . 6
⊢ (𝑦 ∈ 𝐴 → (¬ (𝑦 ·Q 𝑏) ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴)) |
149 | 148 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ 𝑦 ∈ 𝐴) → (¬ (𝑦 ·Q 𝑏) ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴)) |
150 | 143, 149 | pm2.61d 179 |
. . . 4
⊢ (((𝐴 ∈ P ∧
1Q <Q 𝑏) ∧ 𝑦 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴) |
151 | 15, 150 | exlimddv 1938 |
. . 3
⊢ ((𝐴 ∈ P ∧
1Q <Q 𝑏) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝑏) ∈ 𝐴) |
152 | 11, 151 | vtoclg 3505 |
. 2
⊢ (𝐵 ∈ Q →
((𝐴 ∈ P
∧ 1Q <Q 𝐵) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝐵) ∈ 𝐴)) |
153 | 4, 152 | mpcom 38 |
1
⊢ ((𝐴 ∈ P ∧
1Q <Q 𝐵) → ∃𝑥 ∈ 𝐴 ¬ (𝑥 ·Q 𝐵) ∈ 𝐴) |