MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpn0 Structured version   Visualization version   GIF version

Theorem genpn0 10809
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpn0 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpn0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 10795 . . . 4 (𝐴P𝐴 ≠ ∅)
2 n0 4286 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓𝐴)
31, 2sylib 217 . . 3 (𝐴P → ∃𝑓 𝑓𝐴)
4 prn0 10795 . . . 4 (𝐵P𝐵 ≠ ∅)
5 n0 4286 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑔 𝑔𝐵)
64, 5sylib 217 . . 3 (𝐵P → ∃𝑔 𝑔𝐵)
73, 6anim12i 614 . 2 ((𝐴P𝐵P) → (∃𝑓 𝑓𝐴 ∧ ∃𝑔 𝑔𝐵))
8 genp.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
9 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
108, 9genpprecl 10807 . . . . . . . 8 ((𝐴P𝐵P) → ((𝑓𝐴𝑔𝐵) → (𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵)))
11 ne0i 4274 . . . . . . . . 9 ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → (𝐴𝐹𝐵) ≠ ∅)
12 0pss 4384 . . . . . . . . 9 (∅ ⊊ (𝐴𝐹𝐵) ↔ (𝐴𝐹𝐵) ≠ ∅)
1311, 12sylibr 233 . . . . . . . 8 ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → ∅ ⊊ (𝐴𝐹𝐵))
1410, 13syl6 35 . . . . . . 7 ((𝐴P𝐵P) → ((𝑓𝐴𝑔𝐵) → ∅ ⊊ (𝐴𝐹𝐵)))
1514expcomd 418 . . . . . 6 ((𝐴P𝐵P) → (𝑔𝐵 → (𝑓𝐴 → ∅ ⊊ (𝐴𝐹𝐵))))
1615exlimdv 1934 . . . . 5 ((𝐴P𝐵P) → (∃𝑔 𝑔𝐵 → (𝑓𝐴 → ∅ ⊊ (𝐴𝐹𝐵))))
1716com23 86 . . . 4 ((𝐴P𝐵P) → (𝑓𝐴 → (∃𝑔 𝑔𝐵 → ∅ ⊊ (𝐴𝐹𝐵))))
1817exlimdv 1934 . . 3 ((𝐴P𝐵P) → (∃𝑓 𝑓𝐴 → (∃𝑔 𝑔𝐵 → ∅ ⊊ (𝐴𝐹𝐵))))
1918impd 412 . 2 ((𝐴P𝐵P) → ((∃𝑓 𝑓𝐴 ∧ ∃𝑔 𝑔𝐵) → ∅ ⊊ (𝐴𝐹𝐵)))
207, 19mpd 15 1 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wex 1779  wcel 2104  {cab 2713  wne 2941  wrex 3071  wpss 3893  c0 4262  (class class class)co 7307  cmpo 7309  Qcnq 10658  Pcnp 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-ni 10678  df-nq 10718  df-np 10787
This theorem is referenced by:  genpcl  10814
  Copyright terms: Public domain W3C validator