![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpn0 | Structured version Visualization version GIF version |
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpn0 | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prn0 11027 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
2 | n0 4359 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ 𝐴) | |
3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑓 𝑓 ∈ 𝐴) |
4 | prn0 11027 | . . . 4 ⊢ (𝐵 ∈ P → 𝐵 ≠ ∅) | |
5 | n0 4359 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑔 𝑔 ∈ 𝐵) | |
6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝐵 ∈ P → ∃𝑔 𝑔 ∈ 𝐵) |
7 | 3, 6 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑓 𝑓 ∈ 𝐴 ∧ ∃𝑔 𝑔 ∈ 𝐵)) |
8 | genp.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
9 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
10 | 8, 9 | genpprecl 11039 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵) → (𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵))) |
11 | ne0i 4347 | . . . . . . . . 9 ⊢ ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → (𝐴𝐹𝐵) ≠ ∅) | |
12 | 0pss 4453 | . . . . . . . . 9 ⊢ (∅ ⊊ (𝐴𝐹𝐵) ↔ (𝐴𝐹𝐵) ≠ ∅) | |
13 | 11, 12 | sylibr 234 | . . . . . . . 8 ⊢ ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → ∅ ⊊ (𝐴𝐹𝐵)) |
14 | 10, 13 | syl6 35 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵) → ∅ ⊊ (𝐴𝐹𝐵))) |
15 | 14 | expcomd 416 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑔 ∈ 𝐵 → (𝑓 ∈ 𝐴 → ∅ ⊊ (𝐴𝐹𝐵)))) |
16 | 15 | exlimdv 1931 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 𝑔 ∈ 𝐵 → (𝑓 ∈ 𝐴 → ∅ ⊊ (𝐴𝐹𝐵)))) |
17 | 16 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ 𝐴 → (∃𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ (𝐴𝐹𝐵)))) |
18 | 17 | exlimdv 1931 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑓 𝑓 ∈ 𝐴 → (∃𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ (𝐴𝐹𝐵)))) |
19 | 18 | impd 410 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∃𝑓 𝑓 ∈ 𝐴 ∧ ∃𝑔 𝑔 ∈ 𝐵) → ∅ ⊊ (𝐴𝐹𝐵))) |
20 | 7, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∃wrex 3068 ⊊ wpss 3964 ∅c0 4339 (class class class)co 7431 ∈ cmpo 7433 Qcnq 10890 Pcnp 10897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-ni 10910 df-nq 10950 df-np 11019 |
This theorem is referenced by: genpcl 11046 |
Copyright terms: Public domain | W3C validator |