MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpn0 Structured version   Visualization version   GIF version

Theorem genpn0 11072
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpn0 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpn0
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 11058 . . . 4 (𝐴P𝐴 ≠ ∅)
2 n0 4376 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓𝐴)
31, 2sylib 218 . . 3 (𝐴P → ∃𝑓 𝑓𝐴)
4 prn0 11058 . . . 4 (𝐵P𝐵 ≠ ∅)
5 n0 4376 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑔 𝑔𝐵)
64, 5sylib 218 . . 3 (𝐵P → ∃𝑔 𝑔𝐵)
73, 6anim12i 612 . 2 ((𝐴P𝐵P) → (∃𝑓 𝑓𝐴 ∧ ∃𝑔 𝑔𝐵))
8 genp.1 . . . . . . . . 9 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
9 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
108, 9genpprecl 11070 . . . . . . . 8 ((𝐴P𝐵P) → ((𝑓𝐴𝑔𝐵) → (𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵)))
11 ne0i 4364 . . . . . . . . 9 ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → (𝐴𝐹𝐵) ≠ ∅)
12 0pss 4470 . . . . . . . . 9 (∅ ⊊ (𝐴𝐹𝐵) ↔ (𝐴𝐹𝐵) ≠ ∅)
1311, 12sylibr 234 . . . . . . . 8 ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → ∅ ⊊ (𝐴𝐹𝐵))
1410, 13syl6 35 . . . . . . 7 ((𝐴P𝐵P) → ((𝑓𝐴𝑔𝐵) → ∅ ⊊ (𝐴𝐹𝐵)))
1514expcomd 416 . . . . . 6 ((𝐴P𝐵P) → (𝑔𝐵 → (𝑓𝐴 → ∅ ⊊ (𝐴𝐹𝐵))))
1615exlimdv 1932 . . . . 5 ((𝐴P𝐵P) → (∃𝑔 𝑔𝐵 → (𝑓𝐴 → ∅ ⊊ (𝐴𝐹𝐵))))
1716com23 86 . . . 4 ((𝐴P𝐵P) → (𝑓𝐴 → (∃𝑔 𝑔𝐵 → ∅ ⊊ (𝐴𝐹𝐵))))
1817exlimdv 1932 . . 3 ((𝐴P𝐵P) → (∃𝑓 𝑓𝐴 → (∃𝑔 𝑔𝐵 → ∅ ⊊ (𝐴𝐹𝐵))))
1918impd 410 . 2 ((𝐴P𝐵P) → ((∃𝑓 𝑓𝐴 ∧ ∃𝑔 𝑔𝐵) → ∅ ⊊ (𝐴𝐹𝐵)))
207, 19mpd 15 1 ((𝐴P𝐵P) → ∅ ⊊ (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wrex 3076  wpss 3977  c0 4352  (class class class)co 7448  cmpo 7450  Qcnq 10921  Pcnp 10928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-ni 10941  df-nq 10981  df-np 11050
This theorem is referenced by:  genpcl  11077
  Copyright terms: Public domain W3C validator