| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpn0 | Structured version Visualization version GIF version | ||
| Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| Ref | Expression |
|---|---|
| genpn0 | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prn0 11003 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
| 2 | n0 4328 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑓 𝑓 ∈ 𝐴) |
| 4 | prn0 11003 | . . . 4 ⊢ (𝐵 ∈ P → 𝐵 ≠ ∅) | |
| 5 | n0 4328 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑔 𝑔 ∈ 𝐵) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ (𝐵 ∈ P → ∃𝑔 𝑔 ∈ 𝐵) |
| 7 | 3, 6 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑓 𝑓 ∈ 𝐴 ∧ ∃𝑔 𝑔 ∈ 𝐵)) |
| 8 | genp.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 9 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 10 | 8, 9 | genpprecl 11015 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵) → (𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵))) |
| 11 | ne0i 4316 | . . . . . . . . 9 ⊢ ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → (𝐴𝐹𝐵) ≠ ∅) | |
| 12 | 0pss 4422 | . . . . . . . . 9 ⊢ (∅ ⊊ (𝐴𝐹𝐵) ↔ (𝐴𝐹𝐵) ≠ ∅) | |
| 13 | 11, 12 | sylibr 234 | . . . . . . . 8 ⊢ ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → ∅ ⊊ (𝐴𝐹𝐵)) |
| 14 | 10, 13 | syl6 35 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵) → ∅ ⊊ (𝐴𝐹𝐵))) |
| 15 | 14 | expcomd 416 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑔 ∈ 𝐵 → (𝑓 ∈ 𝐴 → ∅ ⊊ (𝐴𝐹𝐵)))) |
| 16 | 15 | exlimdv 1933 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 𝑔 ∈ 𝐵 → (𝑓 ∈ 𝐴 → ∅ ⊊ (𝐴𝐹𝐵)))) |
| 17 | 16 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ 𝐴 → (∃𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ (𝐴𝐹𝐵)))) |
| 18 | 17 | exlimdv 1933 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑓 𝑓 ∈ 𝐴 → (∃𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ (𝐴𝐹𝐵)))) |
| 19 | 18 | impd 410 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∃𝑓 𝑓 ∈ 𝐴 ∧ ∃𝑔 𝑔 ∈ 𝐵) → ∅ ⊊ (𝐴𝐹𝐵))) |
| 20 | 7, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∃wrex 3060 ⊊ wpss 3927 ∅c0 4308 (class class class)co 7405 ∈ cmpo 7407 Qcnq 10866 Pcnp 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-ni 10886 df-nq 10926 df-np 10995 |
| This theorem is referenced by: genpcl 11022 |
| Copyright terms: Public domain | W3C validator |