Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > genpn0 | Structured version Visualization version GIF version |
Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpn0 | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prn0 10729 | . . . 4 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | |
2 | n0 4285 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ 𝐴) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑓 𝑓 ∈ 𝐴) |
4 | prn0 10729 | . . . 4 ⊢ (𝐵 ∈ P → 𝐵 ≠ ∅) | |
5 | n0 4285 | . . . 4 ⊢ (𝐵 ≠ ∅ ↔ ∃𝑔 𝑔 ∈ 𝐵) | |
6 | 4, 5 | sylib 217 | . . 3 ⊢ (𝐵 ∈ P → ∃𝑔 𝑔 ∈ 𝐵) |
7 | 3, 6 | anim12i 612 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑓 𝑓 ∈ 𝐴 ∧ ∃𝑔 𝑔 ∈ 𝐵)) |
8 | genp.1 | . . . . . . . . 9 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
9 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
10 | 8, 9 | genpprecl 10741 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵) → (𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵))) |
11 | ne0i 4273 | . . . . . . . . 9 ⊢ ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → (𝐴𝐹𝐵) ≠ ∅) | |
12 | 0pss 4383 | . . . . . . . . 9 ⊢ (∅ ⊊ (𝐴𝐹𝐵) ↔ (𝐴𝐹𝐵) ≠ ∅) | |
13 | 11, 12 | sylibr 233 | . . . . . . . 8 ⊢ ((𝑓𝐺𝑔) ∈ (𝐴𝐹𝐵) → ∅ ⊊ (𝐴𝐹𝐵)) |
14 | 10, 13 | syl6 35 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵) → ∅ ⊊ (𝐴𝐹𝐵))) |
15 | 14 | expcomd 416 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑔 ∈ 𝐵 → (𝑓 ∈ 𝐴 → ∅ ⊊ (𝐴𝐹𝐵)))) |
16 | 15 | exlimdv 1939 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑔 𝑔 ∈ 𝐵 → (𝑓 ∈ 𝐴 → ∅ ⊊ (𝐴𝐹𝐵)))) |
17 | 16 | com23 86 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ 𝐴 → (∃𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ (𝐴𝐹𝐵)))) |
18 | 17 | exlimdv 1939 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (∃𝑓 𝑓 ∈ 𝐴 → (∃𝑔 𝑔 ∈ 𝐵 → ∅ ⊊ (𝐴𝐹𝐵)))) |
19 | 18 | impd 410 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∃𝑓 𝑓 ∈ 𝐴 ∧ ∃𝑔 𝑔 ∈ 𝐵) → ∅ ⊊ (𝐴𝐹𝐵))) |
20 | 7, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ≠ wne 2944 ∃wrex 3066 ⊊ wpss 3892 ∅c0 4261 (class class class)co 7268 ∈ cmpo 7270 Qcnq 10592 Pcnp 10599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-ni 10612 df-nq 10652 df-np 10721 |
This theorem is referenced by: genpcl 10748 |
Copyright terms: Public domain | W3C validator |