MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Structured version   Visualization version   GIF version

Theorem ltaddpr 11048
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 11003 . . . . 5 (𝐵P𝐵 ≠ ∅)
2 n0 4328 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2sylib 218 . . . 4 (𝐵P → ∃𝑦 𝑦𝐵)
43adantl 481 . . 3 ((𝐴P𝐵P) → ∃𝑦 𝑦𝐵)
5 addclpr 11032 . . . . . . . . . . 11 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
6 df-plp 10997 . . . . . . . . . . . . 13 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
7 addclnq 10959 . . . . . . . . . . . . 13 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
86, 7genpprecl 11015 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
98imp 406 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵))
10 elprnq 11005 . . . . . . . . . . . . 13 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 +Q 𝑦) ∈ Q)
11 addnqf 10962 . . . . . . . . . . . . . . 15 +Q :(Q × Q)⟶Q
1211fdmi 6717 . . . . . . . . . . . . . 14 dom +Q = (Q × Q)
13 0nnq 10938 . . . . . . . . . . . . . 14 ¬ ∅ ∈ Q
1412, 13ndmovrcl 7593 . . . . . . . . . . . . 13 ((𝑥 +Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
15 ltaddnq 10988 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
1610, 14, 153syl 18 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 <Q (𝑥 +Q 𝑦))
17 prcdnq 11007 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 <Q (𝑥 +Q 𝑦) → 𝑥 ∈ (𝐴 +P 𝐵)))
1816, 17mpd 15 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
195, 9, 18syl2an2r 685 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
2019exp32 420 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵𝑥 ∈ (𝐴 +P 𝐵))))
2120com23 86 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
2221alrimdv 1929 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
23 df-ss 3943 . . . . . . 7 (𝐴 ⊆ (𝐴 +P 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵)))
2422, 23imbitrrdi 252 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊆ (𝐴 +P 𝐵)))
25 vex 3463 . . . . . . . . 9 𝑦 ∈ V
2625prlem934 11047 . . . . . . . 8 (𝐴P → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
2726adantr 480 . . . . . . 7 ((𝐴P𝐵P) → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
28 eleq2 2823 . . . . . . . . . . . . 13 (𝐴 = (𝐴 +P 𝐵) → ((𝑥 +Q 𝑦) ∈ 𝐴 ↔ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
2928biimprcd 250 . . . . . . . . . . . 12 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (𝐴 = (𝐴 +P 𝐵) → (𝑥 +Q 𝑦) ∈ 𝐴))
3029con3d 152 . . . . . . . . . . 11 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))
318, 30syl6 35 . . . . . . . . . 10 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3231expd 415 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3332com34 91 . . . . . . . 8 ((𝐴P𝐵P) → (𝑥𝐴 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3433rexlimdv 3139 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3527, 34mpd 15 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))
3624, 35jcad 512 . . . . 5 ((𝐴P𝐵P) → (𝑦𝐵 → (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵))))
37 dfpss2 4063 . . . . 5 (𝐴 ⊊ (𝐴 +P 𝐵) ↔ (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵)))
3836, 37imbitrrdi 252 . . . 4 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
3938exlimdv 1933 . . 3 ((𝐴P𝐵P) → (∃𝑦 𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
404, 39mpd 15 . 2 ((𝐴P𝐵P) → 𝐴 ⊊ (𝐴 +P 𝐵))
41 ltprord 11044 . . 3 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
425, 41syldan 591 . 2 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
4340, 42mpbird 257 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  wss 3926  wpss 3927  c0 4308   class class class wbr 5119   × cxp 5652  (class class class)co 7405  Qcnq 10866   +Q cplq 10869   <Q cltq 10872  Pcnp 10873   +P cpp 10875  <P cltp 10877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-mpq 10923  df-ltpq 10924  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-mq 10929  df-1nq 10930  df-rq 10931  df-ltnq 10932  df-np 10995  df-plp 10997  df-ltp 10999
This theorem is referenced by:  ltaddpr2  11049  ltexprlem7  11056  ltaprlem  11058  0lt1sr  11109  mappsrpr  11122
  Copyright terms: Public domain W3C validator