MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Structured version   Visualization version   GIF version

Theorem ltaddpr 11065
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 11020 . . . . 5 (𝐵P𝐵 ≠ ∅)
2 n0 4350 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2sylib 217 . . . 4 (𝐵P → ∃𝑦 𝑦𝐵)
43adantl 480 . . 3 ((𝐴P𝐵P) → ∃𝑦 𝑦𝐵)
5 addclpr 11049 . . . . . . . . . . 11 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
6 df-plp 11014 . . . . . . . . . . . . 13 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
7 addclnq 10976 . . . . . . . . . . . . 13 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
86, 7genpprecl 11032 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
98imp 405 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵))
10 elprnq 11022 . . . . . . . . . . . . 13 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 +Q 𝑦) ∈ Q)
11 addnqf 10979 . . . . . . . . . . . . . . 15 +Q :(Q × Q)⟶Q
1211fdmi 6739 . . . . . . . . . . . . . 14 dom +Q = (Q × Q)
13 0nnq 10955 . . . . . . . . . . . . . 14 ¬ ∅ ∈ Q
1412, 13ndmovrcl 7613 . . . . . . . . . . . . 13 ((𝑥 +Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
15 ltaddnq 11005 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
1610, 14, 153syl 18 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 <Q (𝑥 +Q 𝑦))
17 prcdnq 11024 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 <Q (𝑥 +Q 𝑦) → 𝑥 ∈ (𝐴 +P 𝐵)))
1816, 17mpd 15 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
195, 9, 18syl2an2r 683 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
2019exp32 419 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵𝑥 ∈ (𝐴 +P 𝐵))))
2120com23 86 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
2221alrimdv 1924 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
23 dfss2 3969 . . . . . . 7 (𝐴 ⊆ (𝐴 +P 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵)))
2422, 23imbitrrdi 251 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊆ (𝐴 +P 𝐵)))
25 vex 3477 . . . . . . . . 9 𝑦 ∈ V
2625prlem934 11064 . . . . . . . 8 (𝐴P → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
2726adantr 479 . . . . . . 7 ((𝐴P𝐵P) → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
28 eleq2 2818 . . . . . . . . . . . . 13 (𝐴 = (𝐴 +P 𝐵) → ((𝑥 +Q 𝑦) ∈ 𝐴 ↔ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
2928biimprcd 249 . . . . . . . . . . . 12 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (𝐴 = (𝐴 +P 𝐵) → (𝑥 +Q 𝑦) ∈ 𝐴))
3029con3d 152 . . . . . . . . . . 11 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))
318, 30syl6 35 . . . . . . . . . 10 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3231expd 414 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3332com34 91 . . . . . . . 8 ((𝐴P𝐵P) → (𝑥𝐴 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3433rexlimdv 3150 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3527, 34mpd 15 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))
3624, 35jcad 511 . . . . 5 ((𝐴P𝐵P) → (𝑦𝐵 → (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵))))
37 dfpss2 4085 . . . . 5 (𝐴 ⊊ (𝐴 +P 𝐵) ↔ (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵)))
3836, 37imbitrrdi 251 . . . 4 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
3938exlimdv 1928 . . 3 ((𝐴P𝐵P) → (∃𝑦 𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
404, 39mpd 15 . 2 ((𝐴P𝐵P) → 𝐴 ⊊ (𝐴 +P 𝐵))
41 ltprord 11061 . . 3 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
425, 41syldan 589 . 2 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
4340, 42mpbird 256 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wex 1773  wcel 2098  wne 2937  wrex 3067  wss 3949  wpss 3950  c0 4326   class class class wbr 5152   × cxp 5680  (class class class)co 7426  Qcnq 10883   +Q cplq 10886   <Q cltq 10889  Pcnp 10890   +P cpp 10892  <P cltp 10894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-omul 8498  df-er 8731  df-ni 10903  df-pli 10904  df-mi 10905  df-lti 10906  df-plpq 10939  df-mpq 10940  df-ltpq 10941  df-enq 10942  df-nq 10943  df-erq 10944  df-plq 10945  df-mq 10946  df-1nq 10947  df-rq 10948  df-ltnq 10949  df-np 11012  df-plp 11014  df-ltp 11016
This theorem is referenced by:  ltaddpr2  11066  ltexprlem7  11073  ltaprlem  11075  0lt1sr  11126  mappsrpr  11139
  Copyright terms: Public domain W3C validator