Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxznm Structured version   Visualization version   GIF version

Theorem zlmodzxznm 48486
Description: Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzequa.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzequa.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequa.t = ( ·𝑠𝑍)
zlmodzxzequa.m = (-g𝑍)
zlmodzxzequa.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzequa.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxznm 𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)

Proof of Theorem zlmodzxznm
StepHypRef Expression
1 3prm 16664 . . . . . . . . . . . 12 3 ∈ ℙ
2 2prm 16662 . . . . . . . . . . . 12 2 ∈ ℙ
3 ztprmneprm 48335 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 3 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑖 · 3) = 2 → 3 = 2))
41, 2, 3mp3an23 1455 . . . . . . . . . . 11 (𝑖 ∈ ℤ → ((𝑖 · 3) = 2 → 3 = 2))
5 2re 12260 . . . . . . . . . . . . . 14 2 ∈ ℝ
6 2lt3 12353 . . . . . . . . . . . . . 14 2 < 3
75, 6ltneii 11287 . . . . . . . . . . . . 13 2 ≠ 3
8 eqneqall 2936 . . . . . . . . . . . . 13 (2 = 3 → (2 ≠ 3 → (𝑖 · 3) ≠ 2))
97, 8mpi 20 . . . . . . . . . . . 12 (2 = 3 → (𝑖 · 3) ≠ 2)
109eqcoms 2737 . . . . . . . . . . 11 (3 = 2 → (𝑖 · 3) ≠ 2)
114, 10syl6com 37 . . . . . . . . . 10 ((𝑖 · 3) = 2 → (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2))
12 ax-1 6 . . . . . . . . . 10 ((𝑖 · 3) ≠ 2 → (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2))
1311, 12pm2.61ine 3008 . . . . . . . . 9 (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2)
1413olcd 874 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2))
15 c0ex 11168 . . . . . . . . . 10 0 ∈ V
16 ovex 7420 . . . . . . . . . 10 (𝑖 · 3) ∈ V
1715, 16pm3.2i 470 . . . . . . . . 9 (0 ∈ V ∧ (𝑖 · 3) ∈ V)
18 opthneg 5441 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2)))
1917, 18mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2)))
2014, 19mpbird 257 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩)
21 0ne1 12257 . . . . . . . . . 10 0 ≠ 1
2221a1i 11 . . . . . . . . 9 (𝑖 ∈ ℤ → 0 ≠ 1)
2322orcd 873 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4))
24 opthneg 5441 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4)))
2517, 24mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4)))
2623, 25mpbird 257 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩)
2720, 26jca 511 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩))
2827orcd 873 . . . . 5 (𝑖 ∈ ℤ → ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩)))
29 opex 5424 . . . . . . . 8 ⟨0, (𝑖 · 3)⟩ ∈ V
30 opex 5424 . . . . . . . 8 ⟨1, (𝑖 · 6)⟩ ∈ V
3129, 30pm3.2i 470 . . . . . . 7 (⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V)
3231a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V))
33 opex 5424 . . . . . . . 8 ⟨0, 2⟩ ∈ V
34 opex 5424 . . . . . . . 8 ⟨1, 4⟩ ∈ V
3533, 34pm3.2i 470 . . . . . . 7 (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V)
3635a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V))
3722orcd 873 . . . . . . 7 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6)))
38 opthneg 5441 . . . . . . . 8 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6))))
3917, 38mp1i 13 . . . . . . 7 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6))))
4037, 39mpbird 257 . . . . . 6 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩)
41 prnebg 4820 . . . . . . 7 (((⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V) ∧ (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V) ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩) → (((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩)) ↔ {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
4241bicomd 223 . . . . . 6 (((⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V) ∧ (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V) ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩) → ({⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} ↔ ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩))))
4332, 36, 40, 42syl3anc 1373 . . . . 5 (𝑖 ∈ ℤ → ({⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} ↔ ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩))))
4428, 43mpbird 257 . . . 4 (𝑖 ∈ ℤ → {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩})
45 zlmodzxzequa.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4645oveq2i 7398 . . . . 5 (𝑖 𝐴) = (𝑖 {⟨0, 3⟩, ⟨1, 6⟩})
47 3z 12566 . . . . . 6 3 ∈ ℤ
48 6nn 12275 . . . . . . 7 6 ∈ ℕ
4948nnzi 12557 . . . . . 6 6 ∈ ℤ
50 zlmodzxzequa.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
51 zlmodzxzequa.t . . . . . . 7 = ( ·𝑠𝑍)
5250, 51zlmodzxzscm 48345 . . . . . 6 ((𝑖 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑖 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
5347, 49, 52mp3an23 1455 . . . . 5 (𝑖 ∈ ℤ → (𝑖 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
5446, 53eqtrid 2776 . . . 4 (𝑖 ∈ ℤ → (𝑖 𝐴) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
55 zlmodzxzequa.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
5655a1i 11 . . . 4 (𝑖 ∈ ℤ → 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩})
5744, 54, 563netr4d 3002 . . 3 (𝑖 ∈ ℤ → (𝑖 𝐴) ≠ 𝐵)
58 ztprmneprm 48335 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 2 ∈ ℙ ∧ 3 ∈ ℙ) → ((𝑖 · 2) = 3 → 2 = 3))
592, 1, 58mp3an23 1455 . . . . . . . . . . 11 (𝑖 ∈ ℤ → ((𝑖 · 2) = 3 → 2 = 3))
60 eqneqall 2936 . . . . . . . . . . . 12 (2 = 3 → (2 ≠ 3 → (𝑖 · 2) ≠ 3))
617, 60mpi 20 . . . . . . . . . . 11 (2 = 3 → (𝑖 · 2) ≠ 3)
6259, 61syl6com 37 . . . . . . . . . 10 ((𝑖 · 2) = 3 → (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3))
63 ax-1 6 . . . . . . . . . 10 ((𝑖 · 2) ≠ 3 → (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3))
6462, 63pm2.61ine 3008 . . . . . . . . 9 (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3)
6564olcd 874 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3))
66 ovex 7420 . . . . . . . . . 10 (𝑖 · 2) ∈ V
6715, 66pm3.2i 470 . . . . . . . . 9 (0 ∈ V ∧ (𝑖 · 2) ∈ V)
68 opthneg 5441 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3)))
6967, 68mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3)))
7065, 69mpbird 257 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩)
7122orcd 873 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6))
72 opthneg 5441 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6)))
7367, 72mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6)))
7471, 73mpbird 257 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩)
7570, 74jca 511 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩))
7675orcd 873 . . . . 5 (𝑖 ∈ ℤ → ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩)))
77 opex 5424 . . . . . . . 8 ⟨0, (𝑖 · 2)⟩ ∈ V
78 opex 5424 . . . . . . . 8 ⟨1, (𝑖 · 4)⟩ ∈ V
7977, 78pm3.2i 470 . . . . . . 7 (⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V)
8079a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V))
81 opex 5424 . . . . . . . 8 ⟨0, 3⟩ ∈ V
82 opex 5424 . . . . . . . 8 ⟨1, 6⟩ ∈ V
8381, 82pm3.2i 470 . . . . . . 7 (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V)
8483a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V))
8522orcd 873 . . . . . . 7 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4)))
86 opthneg 5441 . . . . . . . 8 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4))))
8767, 86mp1i 13 . . . . . . 7 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4))))
8885, 87mpbird 257 . . . . . 6 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩)
89 prnebg 4820 . . . . . . 7 (((⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V) ∧ (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V) ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩) → (((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩)) ↔ {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
9089bicomd 223 . . . . . 6 (((⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V) ∧ (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V) ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩) → ({⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩} ↔ ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩))))
9180, 84, 88, 90syl3anc 1373 . . . . 5 (𝑖 ∈ ℤ → ({⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩} ↔ ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩))))
9276, 91mpbird 257 . . . 4 (𝑖 ∈ ℤ → {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩})
9355oveq2i 7398 . . . . 5 (𝑖 𝐵) = (𝑖 {⟨0, 2⟩, ⟨1, 4⟩})
94 2z 12565 . . . . . 6 2 ∈ ℤ
95 4z 12567 . . . . . 6 4 ∈ ℤ
9650, 51zlmodzxzscm 48345 . . . . . 6 ((𝑖 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑖 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9794, 95, 96mp3an23 1455 . . . . 5 (𝑖 ∈ ℤ → (𝑖 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9893, 97eqtrid 2776 . . . 4 (𝑖 ∈ ℤ → (𝑖 𝐵) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9945a1i 11 . . . 4 (𝑖 ∈ ℤ → 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩})
10092, 98, 993netr4d 3002 . . 3 (𝑖 ∈ ℤ → (𝑖 𝐵) ≠ 𝐴)
10157, 100jca 511 . 2 (𝑖 ∈ ℤ → ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴))
102101rgen 3046 1 𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  {cpr 4591  cop 4595  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   · cmul 11073  2c2 12241  3c3 12242  4c4 12243  6c6 12245  cz 12529  cprime 16641   ·𝑠 cvsca 17224  -gcsg 18867  ringczring 21356   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-dsmm 21641  df-frlm 21656
This theorem is referenced by:  ldepsnlinclem1  48494  ldepsnlinclem2  48495
  Copyright terms: Public domain W3C validator