Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxznm Structured version   Visualization version   GIF version

Theorem zlmodzxznm 44384
Description: Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzequa.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzequa.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequa.t = ( ·𝑠𝑍)
zlmodzxzequa.m = (-g𝑍)
zlmodzxzequa.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzequa.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxznm 𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)

Proof of Theorem zlmodzxznm
StepHypRef Expression
1 3prm 16028 . . . . . . . . . . . 12 3 ∈ ℙ
2 2prm 16026 . . . . . . . . . . . 12 2 ∈ ℙ
3 ztprmneprm 44227 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 3 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑖 · 3) = 2 → 3 = 2))
41, 2, 3mp3an23 1446 . . . . . . . . . . 11 (𝑖 ∈ ℤ → ((𝑖 · 3) = 2 → 3 = 2))
5 2re 11700 . . . . . . . . . . . . . 14 2 ∈ ℝ
6 2lt3 11798 . . . . . . . . . . . . . 14 2 < 3
75, 6ltneii 10742 . . . . . . . . . . . . 13 2 ≠ 3
8 eqneqall 3032 . . . . . . . . . . . . 13 (2 = 3 → (2 ≠ 3 → (𝑖 · 3) ≠ 2))
97, 8mpi 20 . . . . . . . . . . . 12 (2 = 3 → (𝑖 · 3) ≠ 2)
109eqcoms 2834 . . . . . . . . . . 11 (3 = 2 → (𝑖 · 3) ≠ 2)
114, 10syl6com 37 . . . . . . . . . 10 ((𝑖 · 3) = 2 → (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2))
12 ax-1 6 . . . . . . . . . 10 ((𝑖 · 3) ≠ 2 → (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2))
1311, 12pm2.61ine 3105 . . . . . . . . 9 (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2)
1413olcd 872 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2))
15 c0ex 10624 . . . . . . . . . 10 0 ∈ V
16 ovex 7181 . . . . . . . . . 10 (𝑖 · 3) ∈ V
1715, 16pm3.2i 471 . . . . . . . . 9 (0 ∈ V ∧ (𝑖 · 3) ∈ V)
18 opthneg 5370 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2)))
1917, 18mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2)))
2014, 19mpbird 258 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩)
21 0ne1 11697 . . . . . . . . . 10 0 ≠ 1
2221a1i 11 . . . . . . . . 9 (𝑖 ∈ ℤ → 0 ≠ 1)
2322orcd 871 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4))
24 opthneg 5370 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4)))
2517, 24mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4)))
2623, 25mpbird 258 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩)
2720, 26jca 512 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩))
2827orcd 871 . . . . 5 (𝑖 ∈ ℤ → ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩)))
29 opex 5353 . . . . . . . 8 ⟨0, (𝑖 · 3)⟩ ∈ V
30 opex 5353 . . . . . . . 8 ⟨1, (𝑖 · 6)⟩ ∈ V
3129, 30pm3.2i 471 . . . . . . 7 (⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V)
3231a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V))
33 opex 5353 . . . . . . . 8 ⟨0, 2⟩ ∈ V
34 opex 5353 . . . . . . . 8 ⟨1, 4⟩ ∈ V
3533, 34pm3.2i 471 . . . . . . 7 (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V)
3635a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V))
3722orcd 871 . . . . . . 7 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6)))
38 opthneg 5370 . . . . . . . 8 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6))))
3917, 38mp1i 13 . . . . . . 7 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6))))
4037, 39mpbird 258 . . . . . 6 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩)
41 prnebg 4785 . . . . . . 7 (((⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V) ∧ (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V) ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩) → (((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩)) ↔ {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
4241bicomd 224 . . . . . 6 (((⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V) ∧ (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V) ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩) → ({⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} ↔ ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩))))
4332, 36, 40, 42syl3anc 1365 . . . . 5 (𝑖 ∈ ℤ → ({⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} ↔ ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩))))
4428, 43mpbird 258 . . . 4 (𝑖 ∈ ℤ → {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩})
45 zlmodzxzequa.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4645oveq2i 7159 . . . . 5 (𝑖 𝐴) = (𝑖 {⟨0, 3⟩, ⟨1, 6⟩})
47 3z 12004 . . . . . 6 3 ∈ ℤ
48 6nn 11715 . . . . . . 7 6 ∈ ℕ
4948nnzi 11995 . . . . . 6 6 ∈ ℤ
50 zlmodzxzequa.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
51 zlmodzxzequa.t . . . . . . 7 = ( ·𝑠𝑍)
5250, 51zlmodzxzscm 44237 . . . . . 6 ((𝑖 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑖 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
5347, 49, 52mp3an23 1446 . . . . 5 (𝑖 ∈ ℤ → (𝑖 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
5446, 53syl5eq 2873 . . . 4 (𝑖 ∈ ℤ → (𝑖 𝐴) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
55 zlmodzxzequa.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
5655a1i 11 . . . 4 (𝑖 ∈ ℤ → 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩})
5744, 54, 563netr4d 3098 . . 3 (𝑖 ∈ ℤ → (𝑖 𝐴) ≠ 𝐵)
58 ztprmneprm 44227 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 2 ∈ ℙ ∧ 3 ∈ ℙ) → ((𝑖 · 2) = 3 → 2 = 3))
592, 1, 58mp3an23 1446 . . . . . . . . . . 11 (𝑖 ∈ ℤ → ((𝑖 · 2) = 3 → 2 = 3))
60 eqneqall 3032 . . . . . . . . . . . 12 (2 = 3 → (2 ≠ 3 → (𝑖 · 2) ≠ 3))
617, 60mpi 20 . . . . . . . . . . 11 (2 = 3 → (𝑖 · 2) ≠ 3)
6259, 61syl6com 37 . . . . . . . . . 10 ((𝑖 · 2) = 3 → (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3))
63 ax-1 6 . . . . . . . . . 10 ((𝑖 · 2) ≠ 3 → (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3))
6462, 63pm2.61ine 3105 . . . . . . . . 9 (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3)
6564olcd 872 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3))
66 ovex 7181 . . . . . . . . . 10 (𝑖 · 2) ∈ V
6715, 66pm3.2i 471 . . . . . . . . 9 (0 ∈ V ∧ (𝑖 · 2) ∈ V)
68 opthneg 5370 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3)))
6967, 68mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3)))
7065, 69mpbird 258 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩)
7122orcd 871 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6))
72 opthneg 5370 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6)))
7367, 72mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6)))
7471, 73mpbird 258 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩)
7570, 74jca 512 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩))
7675orcd 871 . . . . 5 (𝑖 ∈ ℤ → ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩)))
77 opex 5353 . . . . . . . 8 ⟨0, (𝑖 · 2)⟩ ∈ V
78 opex 5353 . . . . . . . 8 ⟨1, (𝑖 · 4)⟩ ∈ V
7977, 78pm3.2i 471 . . . . . . 7 (⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V)
8079a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V))
81 opex 5353 . . . . . . . 8 ⟨0, 3⟩ ∈ V
82 opex 5353 . . . . . . . 8 ⟨1, 6⟩ ∈ V
8381, 82pm3.2i 471 . . . . . . 7 (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V)
8483a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V))
8522orcd 871 . . . . . . 7 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4)))
86 opthneg 5370 . . . . . . . 8 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4))))
8767, 86mp1i 13 . . . . . . 7 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4))))
8885, 87mpbird 258 . . . . . 6 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩)
89 prnebg 4785 . . . . . . 7 (((⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V) ∧ (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V) ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩) → (((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩)) ↔ {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
9089bicomd 224 . . . . . 6 (((⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V) ∧ (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V) ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩) → ({⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩} ↔ ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩))))
9180, 84, 88, 90syl3anc 1365 . . . . 5 (𝑖 ∈ ℤ → ({⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩} ↔ ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩))))
9276, 91mpbird 258 . . . 4 (𝑖 ∈ ℤ → {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩})
9355oveq2i 7159 . . . . 5 (𝑖 𝐵) = (𝑖 {⟨0, 2⟩, ⟨1, 4⟩})
94 2z 12003 . . . . . 6 2 ∈ ℤ
95 4z 12005 . . . . . 6 4 ∈ ℤ
9650, 51zlmodzxzscm 44237 . . . . . 6 ((𝑖 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑖 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9794, 95, 96mp3an23 1446 . . . . 5 (𝑖 ∈ ℤ → (𝑖 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9893, 97syl5eq 2873 . . . 4 (𝑖 ∈ ℤ → (𝑖 𝐵) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9945a1i 11 . . . 4 (𝑖 ∈ ℤ → 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩})
10092, 98, 993netr4d 3098 . . 3 (𝑖 ∈ ℤ → (𝑖 𝐵) ≠ 𝐴)
10157, 100jca 512 . 2 (𝑖 ∈ ℤ → ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴))
102101rgen 3153 1 𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  Vcvv 3500  {cpr 4566  cop 4570  cfv 6352  (class class class)co 7148  0cc0 10526  1c1 10527   · cmul 10531  2c2 11681  3c3 11682  4c4 11683  6c6 11685  cz 11970  cprime 16005   ·𝑠 cvsca 16559  -gcsg 18035  ringzring 20533   freeLMod cfrlm 20806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-rp 12380  df-fz 12883  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-dvds 15598  df-prm 16006  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-pws 16713  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-grp 18036  df-minusg 18037  df-subg 18206  df-cmn 18828  df-mgp 19160  df-ur 19172  df-ring 19219  df-cring 19220  df-subrg 19453  df-sra 19864  df-rgmod 19865  df-cnfld 20462  df-zring 20534  df-dsmm 20792  df-frlm 20807
This theorem is referenced by:  ldepsnlinclem1  44392  ldepsnlinclem2  44393
  Copyright terms: Public domain W3C validator