Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxznm Structured version   Visualization version   GIF version

Theorem zlmodzxznm 45419
Description: Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzequa.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzequa.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequa.t = ( ·𝑠𝑍)
zlmodzxzequa.m = (-g𝑍)
zlmodzxzequa.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzequa.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxznm 𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)

Proof of Theorem zlmodzxznm
StepHypRef Expression
1 3prm 16147 . . . . . . . . . . . 12 3 ∈ ℙ
2 2prm 16145 . . . . . . . . . . . 12 2 ∈ ℙ
3 ztprmneprm 45264 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 3 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑖 · 3) = 2 → 3 = 2))
41, 2, 3mp3an23 1454 . . . . . . . . . . 11 (𝑖 ∈ ℤ → ((𝑖 · 3) = 2 → 3 = 2))
5 2re 11802 . . . . . . . . . . . . . 14 2 ∈ ℝ
6 2lt3 11900 . . . . . . . . . . . . . 14 2 < 3
75, 6ltneii 10843 . . . . . . . . . . . . 13 2 ≠ 3
8 eqneqall 2946 . . . . . . . . . . . . 13 (2 = 3 → (2 ≠ 3 → (𝑖 · 3) ≠ 2))
97, 8mpi 20 . . . . . . . . . . . 12 (2 = 3 → (𝑖 · 3) ≠ 2)
109eqcoms 2747 . . . . . . . . . . 11 (3 = 2 → (𝑖 · 3) ≠ 2)
114, 10syl6com 37 . . . . . . . . . 10 ((𝑖 · 3) = 2 → (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2))
12 ax-1 6 . . . . . . . . . 10 ((𝑖 · 3) ≠ 2 → (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2))
1311, 12pm2.61ine 3018 . . . . . . . . 9 (𝑖 ∈ ℤ → (𝑖 · 3) ≠ 2)
1413olcd 873 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2))
15 c0ex 10725 . . . . . . . . . 10 0 ∈ V
16 ovex 7215 . . . . . . . . . 10 (𝑖 · 3) ∈ V
1715, 16pm3.2i 474 . . . . . . . . 9 (0 ∈ V ∧ (𝑖 · 3) ∈ V)
18 opthneg 5349 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2)))
1917, 18mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 3) ≠ 2)))
2014, 19mpbird 260 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩)
21 0ne1 11799 . . . . . . . . . 10 0 ≠ 1
2221a1i 11 . . . . . . . . 9 (𝑖 ∈ ℤ → 0 ≠ 1)
2322orcd 872 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4))
24 opthneg 5349 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4)))
2517, 24mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ 4)))
2623, 25mpbird 260 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩)
2720, 26jca 515 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩))
2827orcd 872 . . . . 5 (𝑖 ∈ ℤ → ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩)))
29 opex 5332 . . . . . . . 8 ⟨0, (𝑖 · 3)⟩ ∈ V
30 opex 5332 . . . . . . . 8 ⟨1, (𝑖 · 6)⟩ ∈ V
3129, 30pm3.2i 474 . . . . . . 7 (⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V)
3231a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V))
33 opex 5332 . . . . . . . 8 ⟨0, 2⟩ ∈ V
34 opex 5332 . . . . . . . 8 ⟨1, 4⟩ ∈ V
3533, 34pm3.2i 474 . . . . . . 7 (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V)
3635a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V))
3722orcd 872 . . . . . . 7 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6)))
38 opthneg 5349 . . . . . . . 8 ((0 ∈ V ∧ (𝑖 · 3) ∈ V) → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6))))
3917, 38mp1i 13 . . . . . . 7 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 3) ≠ (𝑖 · 6))))
4037, 39mpbird 260 . . . . . 6 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩)
41 prnebg 4751 . . . . . . 7 (((⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V) ∧ (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V) ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩) → (((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩)) ↔ {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
4241bicomd 226 . . . . . 6 (((⟨0, (𝑖 · 3)⟩ ∈ V ∧ ⟨1, (𝑖 · 6)⟩ ∈ V) ∧ (⟨0, 2⟩ ∈ V ∧ ⟨1, 4⟩ ∈ V) ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, (𝑖 · 6)⟩) → ({⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} ↔ ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩))))
4332, 36, 40, 42syl3anc 1372 . . . . 5 (𝑖 ∈ ℤ → ({⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} ↔ ((⟨0, (𝑖 · 3)⟩ ≠ ⟨0, 2⟩ ∧ ⟨0, (𝑖 · 3)⟩ ≠ ⟨1, 4⟩) ∨ (⟨1, (𝑖 · 6)⟩ ≠ ⟨0, 2⟩ ∧ ⟨1, (𝑖 · 6)⟩ ≠ ⟨1, 4⟩))))
4428, 43mpbird 260 . . . 4 (𝑖 ∈ ℤ → {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩})
45 zlmodzxzequa.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
4645oveq2i 7193 . . . . 5 (𝑖 𝐴) = (𝑖 {⟨0, 3⟩, ⟨1, 6⟩})
47 3z 12108 . . . . . 6 3 ∈ ℤ
48 6nn 11817 . . . . . . 7 6 ∈ ℕ
4948nnzi 12099 . . . . . 6 6 ∈ ℤ
50 zlmodzxzequa.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
51 zlmodzxzequa.t . . . . . . 7 = ( ·𝑠𝑍)
5250, 51zlmodzxzscm 45274 . . . . . 6 ((𝑖 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (𝑖 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
5347, 49, 52mp3an23 1454 . . . . 5 (𝑖 ∈ ℤ → (𝑖 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
5446, 53syl5eq 2786 . . . 4 (𝑖 ∈ ℤ → (𝑖 𝐴) = {⟨0, (𝑖 · 3)⟩, ⟨1, (𝑖 · 6)⟩})
55 zlmodzxzequa.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
5655a1i 11 . . . 4 (𝑖 ∈ ℤ → 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩})
5744, 54, 563netr4d 3012 . . 3 (𝑖 ∈ ℤ → (𝑖 𝐴) ≠ 𝐵)
58 ztprmneprm 45264 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 2 ∈ ℙ ∧ 3 ∈ ℙ) → ((𝑖 · 2) = 3 → 2 = 3))
592, 1, 58mp3an23 1454 . . . . . . . . . . 11 (𝑖 ∈ ℤ → ((𝑖 · 2) = 3 → 2 = 3))
60 eqneqall 2946 . . . . . . . . . . . 12 (2 = 3 → (2 ≠ 3 → (𝑖 · 2) ≠ 3))
617, 60mpi 20 . . . . . . . . . . 11 (2 = 3 → (𝑖 · 2) ≠ 3)
6259, 61syl6com 37 . . . . . . . . . 10 ((𝑖 · 2) = 3 → (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3))
63 ax-1 6 . . . . . . . . . 10 ((𝑖 · 2) ≠ 3 → (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3))
6462, 63pm2.61ine 3018 . . . . . . . . 9 (𝑖 ∈ ℤ → (𝑖 · 2) ≠ 3)
6564olcd 873 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3))
66 ovex 7215 . . . . . . . . . 10 (𝑖 · 2) ∈ V
6715, 66pm3.2i 474 . . . . . . . . 9 (0 ∈ V ∧ (𝑖 · 2) ∈ V)
68 opthneg 5349 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3)))
6967, 68mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ↔ (0 ≠ 0 ∨ (𝑖 · 2) ≠ 3)))
7065, 69mpbird 260 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩)
7122orcd 872 . . . . . . . 8 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6))
72 opthneg 5349 . . . . . . . . 9 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6)))
7367, 72mp1i 13 . . . . . . . 8 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ 6)))
7471, 73mpbird 260 . . . . . . 7 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩)
7570, 74jca 515 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩))
7675orcd 872 . . . . 5 (𝑖 ∈ ℤ → ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩)))
77 opex 5332 . . . . . . . 8 ⟨0, (𝑖 · 2)⟩ ∈ V
78 opex 5332 . . . . . . . 8 ⟨1, (𝑖 · 4)⟩ ∈ V
7977, 78pm3.2i 474 . . . . . . 7 (⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V)
8079a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V))
81 opex 5332 . . . . . . . 8 ⟨0, 3⟩ ∈ V
82 opex 5332 . . . . . . . 8 ⟨1, 6⟩ ∈ V
8381, 82pm3.2i 474 . . . . . . 7 (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V)
8483a1i 11 . . . . . 6 (𝑖 ∈ ℤ → (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V))
8522orcd 872 . . . . . . 7 (𝑖 ∈ ℤ → (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4)))
86 opthneg 5349 . . . . . . . 8 ((0 ∈ V ∧ (𝑖 · 2) ∈ V) → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4))))
8767, 86mp1i 13 . . . . . . 7 (𝑖 ∈ ℤ → (⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩ ↔ (0 ≠ 1 ∨ (𝑖 · 2) ≠ (𝑖 · 4))))
8885, 87mpbird 260 . . . . . 6 (𝑖 ∈ ℤ → ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩)
89 prnebg 4751 . . . . . . 7 (((⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V) ∧ (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V) ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩) → (((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩)) ↔ {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
9089bicomd 226 . . . . . 6 (((⟨0, (𝑖 · 2)⟩ ∈ V ∧ ⟨1, (𝑖 · 4)⟩ ∈ V) ∧ (⟨0, 3⟩ ∈ V ∧ ⟨1, 6⟩ ∈ V) ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, (𝑖 · 4)⟩) → ({⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩} ↔ ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩))))
9180, 84, 88, 90syl3anc 1372 . . . . 5 (𝑖 ∈ ℤ → ({⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩} ↔ ((⟨0, (𝑖 · 2)⟩ ≠ ⟨0, 3⟩ ∧ ⟨0, (𝑖 · 2)⟩ ≠ ⟨1, 6⟩) ∨ (⟨1, (𝑖 · 4)⟩ ≠ ⟨0, 3⟩ ∧ ⟨1, (𝑖 · 4)⟩ ≠ ⟨1, 6⟩))))
9276, 91mpbird 260 . . . 4 (𝑖 ∈ ℤ → {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩} ≠ {⟨0, 3⟩, ⟨1, 6⟩})
9355oveq2i 7193 . . . . 5 (𝑖 𝐵) = (𝑖 {⟨0, 2⟩, ⟨1, 4⟩})
94 2z 12107 . . . . . 6 2 ∈ ℤ
95 4z 12109 . . . . . 6 4 ∈ ℤ
9650, 51zlmodzxzscm 45274 . . . . . 6 ((𝑖 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (𝑖 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9794, 95, 96mp3an23 1454 . . . . 5 (𝑖 ∈ ℤ → (𝑖 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9893, 97syl5eq 2786 . . . 4 (𝑖 ∈ ℤ → (𝑖 𝐵) = {⟨0, (𝑖 · 2)⟩, ⟨1, (𝑖 · 4)⟩})
9945a1i 11 . . . 4 (𝑖 ∈ ℤ → 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩})
10092, 98, 993netr4d 3012 . . 3 (𝑖 ∈ ℤ → (𝑖 𝐵) ≠ 𝐴)
10157, 100jca 515 . 2 (𝑖 ∈ ℤ → ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴))
102101rgen 3064 1 𝑖 ∈ ℤ ((𝑖 𝐴) ≠ 𝐵 ∧ (𝑖 𝐵) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  Vcvv 3400  {cpr 4528  cop 4532  cfv 6349  (class class class)co 7182  0cc0 10627  1c1 10628   · cmul 10632  2c2 11783  3c3 11784  4c4 11785  6c6 11787  cz 12074  cprime 16124   ·𝑠 cvsca 16684  -gcsg 18233  ringzring 20301   freeLMod cfrlm 20574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-2o 8144  df-er 8332  df-map 8451  df-ixp 8520  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-sup 8991  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-rp 12485  df-fz 12994  df-seq 13473  df-exp 13534  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-dvds 15712  df-prm 16125  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-ip 16698  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-hom 16704  df-cco 16705  df-0g 16830  df-prds 16836  df-pws 16838  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-grp 18234  df-minusg 18235  df-subg 18406  df-cmn 19038  df-mgp 19371  df-ur 19383  df-ring 19430  df-cring 19431  df-subrg 19664  df-sra 20075  df-rgmod 20076  df-cnfld 20230  df-zring 20302  df-dsmm 20560  df-frlm 20575
This theorem is referenced by:  ldepsnlinclem1  45427  ldepsnlinclem2  45428
  Copyright terms: Public domain W3C validator