![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkvtxiedg | Structured version Visualization version GIF version |
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
Ref | Expression |
---|---|
wlkvtxeledg.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
wlkvtxiedg | β’ (πΉ(WalksβπΊ)π β βπ β (0..^(β―βπΉ))βπ β ran πΌ{(πβπ), (πβ(π + 1))} β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkvtxeledg.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
2 | 1 | wlkvtxeledg 29350 | . 2 β’ (πΉ(WalksβπΊ)π β βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) |
3 | fvex 6894 | . . . . . . . . 9 β’ (πβπ) β V | |
4 | 3 | prnz 4773 | . . . . . . . 8 β’ {(πβπ), (πβ(π + 1))} β β |
5 | ssn0 4392 | . . . . . . . 8 β’ (({(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)) β§ {(πβπ), (πβ(π + 1))} β β ) β (πΌβ(πΉβπ)) β β ) | |
6 | 4, 5 | mpan2 688 | . . . . . . 7 β’ ({(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)) β (πΌβ(πΉβπ)) β β ) |
7 | 6 | adantl 481 | . . . . . 6 β’ (((πΉ(WalksβπΊ)π β§ π β (0..^(β―βπΉ))) β§ {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β (πΌβ(πΉβπ)) β β ) |
8 | fvn0fvelrn 6912 | . . . . . 6 β’ ((πΌβ(πΉβπ)) β β β (πΌβ(πΉβπ)) β ran πΌ) | |
9 | 7, 8 | syl 17 | . . . . 5 β’ (((πΉ(WalksβπΊ)π β§ π β (0..^(β―βπΉ))) β§ {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β (πΌβ(πΉβπ)) β ran πΌ) |
10 | sseq2 4000 | . . . . . 6 β’ (π = (πΌβ(πΉβπ)) β ({(πβπ), (πβ(π + 1))} β π β {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))) | |
11 | 10 | adantl 481 | . . . . 5 β’ ((((πΉ(WalksβπΊ)π β§ π β (0..^(β―βπΉ))) β§ {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β§ π = (πΌβ(πΉβπ))) β ({(πβπ), (πβ(π + 1))} β π β {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)))) |
12 | simpr 484 | . . . . 5 β’ (((πΉ(WalksβπΊ)π β§ π β (0..^(β―βπΉ))) β§ {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) | |
13 | 9, 11, 12 | rspcedvd 3606 | . . . 4 β’ (((πΉ(WalksβπΊ)π β§ π β (0..^(β―βπΉ))) β§ {(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ))) β βπ β ran πΌ{(πβπ), (πβ(π + 1))} β π) |
14 | 13 | ex 412 | . . 3 β’ ((πΉ(WalksβπΊ)π β§ π β (0..^(β―βπΉ))) β ({(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)) β βπ β ran πΌ{(πβπ), (πβ(π + 1))} β π)) |
15 | 14 | ralimdva 3159 | . 2 β’ (πΉ(WalksβπΊ)π β (βπ β (0..^(β―βπΉ)){(πβπ), (πβ(π + 1))} β (πΌβ(πΉβπ)) β βπ β (0..^(β―βπΉ))βπ β ran πΌ{(πβπ), (πβ(π + 1))} β π)) |
16 | 2, 15 | mpd 15 | 1 β’ (πΉ(WalksβπΊ)π β βπ β (0..^(β―βπΉ))βπ β ran πΌ{(πβπ), (πβ(π + 1))} β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 βwral 3053 βwrex 3062 β wss 3940 β c0 4314 {cpr 4622 class class class wbr 5138 ran crn 5667 βcfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 + caddc 11109 ..^cfzo 13624 β―chash 14287 iEdgciedg 28726 Walkscwlks 29322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-wlks 29325 |
This theorem is referenced by: wlkvtxedg 29370 wlkonl1iedg 29391 |
Copyright terms: Public domain | W3C validator |