![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkvtxiedg | Structured version Visualization version GIF version |
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
Ref | Expression |
---|---|
wlkvtxeledg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
wlkvtxiedg | ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkvtxeledg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | wlkvtxeledg 29657 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
3 | fvex 6920 | . . . . . . . . 9 ⊢ (𝑃‘𝑘) ∈ V | |
4 | 3 | prnz 4782 | . . . . . . . 8 ⊢ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅ |
5 | ssn0 4410 | . . . . . . . 8 ⊢ (({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) | |
6 | 4, 5 | mpan2 691 | . . . . . . 7 ⊢ ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) |
7 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) |
8 | fvn0fvelrn 6938 | . . . . . 6 ⊢ ((𝐼‘(𝐹‘𝑘)) ≠ ∅ → (𝐼‘(𝐹‘𝑘)) ∈ ran 𝐼) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) ∈ ran 𝐼) |
10 | sseq2 4022 | . . . . . 6 ⊢ (𝑒 = (𝐼‘(𝐹‘𝑘)) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ 𝑒 = (𝐼‘(𝐹‘𝑘))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
12 | simpr 484 | . . . . 5 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | |
13 | 9, 11, 12 | rspcedvd 3624 | . . . 4 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → ∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)) |
15 | 14 | ralimdva 3165 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)) |
16 | 2, 15 | mpd 15 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ∅c0 4339 {cpr 4633 class class class wbr 5148 ran crn 5690 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ..^cfzo 13691 ♯chash 14366 iEdgciedg 29029 Walkscwlks 29629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-wlks 29632 |
This theorem is referenced by: wlkvtxedg 29677 wlkonl1iedg 29698 |
Copyright terms: Public domain | W3C validator |