| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkvtxiedg | Structured version Visualization version GIF version | ||
| Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| wlkvtxeledg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| wlkvtxiedg | ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkvtxeledg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | wlkvtxeledg 29602 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
| 3 | fvex 6835 | . . . . . . . . 9 ⊢ (𝑃‘𝑘) ∈ V | |
| 4 | 3 | prnz 4727 | . . . . . . . 8 ⊢ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅ |
| 5 | ssn0 4351 | . . . . . . . 8 ⊢ (({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) | |
| 6 | 4, 5 | mpan2 691 | . . . . . . 7 ⊢ ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) ≠ ∅) |
| 8 | fvn0fvelrn 6851 | . . . . . 6 ⊢ ((𝐼‘(𝐹‘𝑘)) ≠ ∅ → (𝐼‘(𝐹‘𝑘)) ∈ ran 𝐼) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) ∈ ran 𝐼) |
| 10 | sseq2 3956 | . . . . . 6 ⊢ (𝑒 = (𝐼‘(𝐹‘𝑘)) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ 𝑒 = (𝐼‘(𝐹‘𝑘))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | |
| 13 | 9, 11, 12 | rspcedvd 3574 | . . . 4 ⊢ (((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → ∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)) |
| 15 | 14 | ralimdva 3144 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)) |
| 16 | 2, 15 | mpd 15 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 {cpr 4575 class class class wbr 5089 ran crn 5615 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ..^cfzo 13554 ♯chash 14237 iEdgciedg 28975 Walkscwlks 29575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-wlks 29578 |
| This theorem is referenced by: wlkvtxedg 29622 wlkonl1iedg 29642 |
| Copyright terms: Public domain | W3C validator |