MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkvtxiedg Structured version   Visualization version   GIF version

Theorem wlkvtxiedg 29528
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
wlkvtxeledg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlkvtxiedg (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘   𝑒,𝐹   𝑒,𝐺   𝑒,𝐼,𝑘   𝑃,𝑒

Proof of Theorem wlkvtxiedg
StepHypRef Expression
1 wlkvtxeledg.i . . 3 𝐼 = (iEdg‘𝐺)
21wlkvtxeledg 29527 . 2 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
3 fvex 6853 . . . . . . . . 9 (𝑃𝑘) ∈ V
43prnz 4737 . . . . . . . 8 {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅
5 ssn0 4363 . . . . . . . 8 (({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅) → (𝐼‘(𝐹𝑘)) ≠ ∅)
64, 5mpan2 691 . . . . . . 7 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝐼‘(𝐹𝑘)) ≠ ∅)
76adantl 481 . . . . . 6 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) ≠ ∅)
8 fvn0fvelrn 6871 . . . . . 6 ((𝐼‘(𝐹𝑘)) ≠ ∅ → (𝐼‘(𝐹𝑘)) ∈ ran 𝐼)
97, 8syl 17 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) ∈ ran 𝐼)
10 sseq2 3970 . . . . . 6 (𝑒 = (𝐼‘(𝐹𝑘)) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
1110adantl 481 . . . . 5 ((((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ 𝑒 = (𝐼‘(𝐹𝑘))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
12 simpr 484 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
139, 11, 12rspcedvd 3587 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
1413ex 412 . . 3 ((𝐹(Walks‘𝐺)𝑃𝑘 ∈ (0..^(♯‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒))
1514ralimdva 3145 . 2 (𝐹(Walks‘𝐺)𝑃 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒))
162, 15mpd 15 1 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(♯‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3911  c0 4292  {cpr 4587   class class class wbr 5102  ran crn 5632  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  ..^cfzo 13591  chash 14271  iEdgciedg 28900  Walkscwlks 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-wlks 29503
This theorem is referenced by:  wlkvtxedg  29547  wlkonl1iedg  29567
  Copyright terms: Public domain W3C validator