MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrbi Structured version   Visualization version   GIF version

Theorem upgrbi 28919
Description: Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
upgrbi.x 𝑋𝑉
upgrbi.y 𝑌𝑉
Assertion
Ref Expression
upgrbi {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋   𝑥,𝑌

Proof of Theorem upgrbi
StepHypRef Expression
1 upgrbi.x . . . . 5 𝑋𝑉
2 upgrbi.y . . . . 5 𝑌𝑉
3 prssi 4825 . . . . 5 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
41, 2, 3mp2an 691 . . . 4 {𝑋, 𝑌} ⊆ 𝑉
5 prex 5434 . . . . 5 {𝑋, 𝑌} ∈ V
65elpw 4607 . . . 4 ({𝑋, 𝑌} ∈ 𝒫 𝑉 ↔ {𝑋, 𝑌} ⊆ 𝑉)
74, 6mpbir 230 . . 3 {𝑋, 𝑌} ∈ 𝒫 𝑉
81elexi 3491 . . . 4 𝑋 ∈ V
98prnz 4782 . . 3 {𝑋, 𝑌} ≠ ∅
10 eldifsn 4791 . . 3 ({𝑋, 𝑌} ∈ (𝒫 𝑉 ∖ {∅}) ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ {𝑋, 𝑌} ≠ ∅))
117, 9, 10mpbir2an 710 . 2 {𝑋, 𝑌} ∈ (𝒫 𝑉 ∖ {∅})
12 hashprlei 14462 . . 3 ({𝑋, 𝑌} ∈ Fin ∧ (♯‘{𝑋, 𝑌}) ≤ 2)
1312simpri 485 . 2 (♯‘{𝑋, 𝑌}) ≤ 2
14 fveq2 6897 . . . 4 (𝑥 = {𝑋, 𝑌} → (♯‘𝑥) = (♯‘{𝑋, 𝑌}))
1514breq1d 5158 . . 3 (𝑥 = {𝑋, 𝑌} → ((♯‘𝑥) ≤ 2 ↔ (♯‘{𝑋, 𝑌}) ≤ 2))
1615elrab 3682 . 2 ({𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ ({𝑋, 𝑌} ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘{𝑋, 𝑌}) ≤ 2))
1711, 13, 16mpbir2an 710 1 {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  wne 2937  {crab 3429  cdif 3944  wss 3947  c0 4323  𝒫 cpw 4603  {csn 4629  {cpr 4631   class class class wbr 5148  cfv 6548  Fincfn 8964  cle 11280  2c2 12298  chash 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-n0 12504  df-xnn0 12576  df-z 12590  df-uz 12854  df-fz 13518  df-hash 14323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator