![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrbi | Structured version Visualization version GIF version |
Description: Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
upgrbi.x | ⊢ 𝑋 ∈ 𝑉 |
upgrbi.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
upgrbi | ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrbi.x | . . . . 5 ⊢ 𝑋 ∈ 𝑉 | |
2 | upgrbi.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
3 | prssi 4829 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
4 | 1, 2, 3 | mp2an 692 | . . . 4 ⊢ {𝑋, 𝑌} ⊆ 𝑉 |
5 | prex 5446 | . . . . 5 ⊢ {𝑋, 𝑌} ∈ V | |
6 | 5 | elpw 4612 | . . . 4 ⊢ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ↔ {𝑋, 𝑌} ⊆ 𝑉) |
7 | 4, 6 | mpbir 231 | . . 3 ⊢ {𝑋, 𝑌} ∈ 𝒫 𝑉 |
8 | 1 | elexi 3504 | . . . 4 ⊢ 𝑋 ∈ V |
9 | 8 | prnz 4785 | . . 3 ⊢ {𝑋, 𝑌} ≠ ∅ |
10 | eldifsn 4794 | . . 3 ⊢ ({𝑋, 𝑌} ∈ (𝒫 𝑉 ∖ {∅}) ↔ ({𝑋, 𝑌} ∈ 𝒫 𝑉 ∧ {𝑋, 𝑌} ≠ ∅)) | |
11 | 7, 9, 10 | mpbir2an 711 | . 2 ⊢ {𝑋, 𝑌} ∈ (𝒫 𝑉 ∖ {∅}) |
12 | hashprlei 14513 | . . 3 ⊢ ({𝑋, 𝑌} ∈ Fin ∧ (♯‘{𝑋, 𝑌}) ≤ 2) | |
13 | 12 | simpri 485 | . 2 ⊢ (♯‘{𝑋, 𝑌}) ≤ 2 |
14 | fveq2 6914 | . . . 4 ⊢ (𝑥 = {𝑋, 𝑌} → (♯‘𝑥) = (♯‘{𝑋, 𝑌})) | |
15 | 14 | breq1d 5161 | . . 3 ⊢ (𝑥 = {𝑋, 𝑌} → ((♯‘𝑥) ≤ 2 ↔ (♯‘{𝑋, 𝑌}) ≤ 2)) |
16 | 15 | elrab 3698 | . 2 ⊢ ({𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ ({𝑋, 𝑌} ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘{𝑋, 𝑌}) ≤ 2)) |
17 | 11, 13, 16 | mpbir2an 711 | 1 ⊢ {𝑋, 𝑌} ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ∖ cdif 3963 ⊆ wss 3966 ∅c0 4342 𝒫 cpw 4608 {csn 4634 {cpr 4636 class class class wbr 5151 ‘cfv 6569 Fincfn 8993 ≤ cle 11303 2c2 12328 ♯chash 14375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-oadd 8518 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-dju 9948 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-n0 12534 df-xnn0 12607 df-z 12621 df-uz 12886 df-fz 13554 df-hash 14376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |