Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprvalpwn0 Structured version   Visualization version   GIF version

Theorem sprvalpwn0 46746
Description: The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprvalpwn0 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprvalpwn0
StepHypRef Expression
1 sprvalpw 46743 . 2 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 id 22 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → 𝑝 = {𝑎, 𝑏})
3 vex 3473 . . . . . . . . . . 11 𝑎 ∈ V
43prnz 4777 . . . . . . . . . 10 {𝑎, 𝑏} ≠ ∅
54a1i 11 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → {𝑎, 𝑏} ≠ ∅)
62, 5eqnetrd 3003 . . . . . . . 8 (𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅)
76a1i 11 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → (𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅))
87rexlimivv 3194 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅)
98adantl 481 . . . . 5 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) → 𝑝 ≠ ∅)
109pm4.71ri 560 . . . 4 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
11 ancom 460 . . . . . 6 ((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ↔ (𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅))
1211anbi1i 623 . . . . 5 (((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ ((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
13 anass 468 . . . . 5 (((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
14 eldifsn 4786 . . . . . . 7 (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅))
1514bicomi 223 . . . . . 6 ((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ↔ 𝑝 ∈ (𝒫 𝑉 ∖ {∅}))
1615anbi1i 623 . . . . 5 (((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1712, 13, 163bitr3i 301 . . . 4 ((𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1810, 17bitri 275 . . 3 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1918rabbia2 3430 . 2 {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}}
201, 19eqtrdi 2783 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  wrex 3065  {crab 3427  cdif 3941  c0 4318  𝒫 cpw 4598  {csn 4624  {cpr 4626  cfv 6542  Pairscspr 46740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-spr 46741
This theorem is referenced by:  sprvalpwle2  46752
  Copyright terms: Public domain W3C validator