Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprvalpwn0 Structured version   Visualization version   GIF version

Theorem sprvalpwn0 43842
Description: The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprvalpwn0 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprvalpwn0
StepHypRef Expression
1 sprvalpw 43839 . 2 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 id 22 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → 𝑝 = {𝑎, 𝑏})
3 vex 3482 . . . . . . . . . . 11 𝑎 ∈ V
43prnz 4693 . . . . . . . . . 10 {𝑎, 𝑏} ≠ ∅
54a1i 11 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → {𝑎, 𝑏} ≠ ∅)
62, 5eqnetrd 3080 . . . . . . . 8 (𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅)
76a1i 11 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → (𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅))
87rexlimivv 3284 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅)
98adantl 485 . . . . 5 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) → 𝑝 ≠ ∅)
109pm4.71ri 564 . . . 4 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
11 ancom 464 . . . . . 6 ((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ↔ (𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅))
1211anbi1i 626 . . . . 5 (((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ ((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
13 anass 472 . . . . 5 (((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
14 eldifsn 4700 . . . . . . 7 (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅))
1514bicomi 227 . . . . . 6 ((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ↔ 𝑝 ∈ (𝒫 𝑉 ∖ {∅}))
1615anbi1i 626 . . . . 5 (((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1712, 13, 163bitr3i 304 . . . 4 ((𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1810, 17bitri 278 . . 3 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1918rabbia2 3462 . 2 {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}}
201, 19syl6eq 2875 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3013  wrex 3133  {crab 3136  cdif 3915  c0 4274  𝒫 cpw 4520  {csn 4548  {cpr 4550  cfv 6336  Pairscspr 43836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-spr 43837
This theorem is referenced by:  sprvalpwle2  43848
  Copyright terms: Public domain W3C validator