MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edglnl Structured version   Visualization version   GIF version

Theorem edglnl 27513
Description: The edges incident with a vertex 𝑁 are the edges joining 𝑁 with other vertices and the loops on 𝑁 in a pseudograph. (Contributed by AV, 18-Dec-2021.)
Hypotheses
Ref Expression
edglnl.v 𝑉 = (Vtx‘𝐺)
edglnl.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
edglnl ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
Distinct variable groups:   𝑣,𝐸   𝑖,𝐺   𝑖,𝑁,𝑣   𝑖,𝑉,𝑣
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑣)

Proof of Theorem edglnl
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrab 4982 . . . 4 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}
21a1i 11 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
32uneq1d 4096 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))
4 unrab 4239 . . 3 ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})}
5 simpl 483 . . . . . . . 8 ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖))
65rexlimivw 3211 . . . . . . 7 (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖))
76a1i 11 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖)))
8 snidg 4595 . . . . . . . 8 (𝑁𝑉𝑁 ∈ {𝑁})
98ad2antlr 724 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → 𝑁 ∈ {𝑁})
10 eleq2 2827 . . . . . . 7 ((𝐸𝑖) = {𝑁} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑁}))
119, 10syl5ibrcom 246 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) = {𝑁} → 𝑁 ∈ (𝐸𝑖)))
127, 11jaod 856 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) → 𝑁 ∈ (𝐸𝑖)))
13 upgruhgr 27472 . . . . . . . . 9 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
14 edglnl.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
1514uhgrfun 27436 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun 𝐸)
1613, 15syl 17 . . . . . . . 8 (𝐺 ∈ UPGraph → Fun 𝐸)
1716adantr 481 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → Fun 𝐸)
1814iedgedg 27420 . . . . . . 7 ((Fun 𝐸𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
1917, 18sylan 580 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
20 edglnl.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
21 eqid 2738 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
2220, 21upgredg 27507 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ (𝐸𝑖) ∈ (Edg‘𝐺)) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚})
2322ex 413 . . . . . . . 8 (𝐺 ∈ UPGraph → ((𝐸𝑖) ∈ (Edg‘𝐺) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚}))
2423ad2antrr 723 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) ∈ (Edg‘𝐺) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚}))
25 dfsn2 4574 . . . . . . . . . . . . . . . . . . . . . 22 {𝑛} = {𝑛, 𝑛}
2625eqcomi 2747 . . . . . . . . . . . . . . . . . . . . 21 {𝑛, 𝑛} = {𝑛}
27 elsni 4578 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ {𝑛} → 𝑁 = 𝑛)
28 sneq 4571 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 𝑛 → {𝑁} = {𝑛})
2928eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 𝑛 → {𝑛} = {𝑁})
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ {𝑛} → {𝑛} = {𝑁})
3126, 30eqtrid 2790 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ {𝑛} → {𝑛, 𝑛} = {𝑁})
3231, 26eleq2s 2857 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁})
33 preq2 4670 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → {𝑛, 𝑚} = {𝑛, 𝑛})
3433eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} ↔ 𝑁 ∈ {𝑛, 𝑛}))
3533eqeq1d 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ({𝑛, 𝑚} = {𝑁} ↔ {𝑛, 𝑛} = {𝑁}))
3634, 35imbi12d 345 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}) ↔ (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁})))
3732, 36mpbiri 257 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}))
3837imp 407 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝑛𝑁 ∈ {𝑛, 𝑚}) → {𝑛, 𝑚} = {𝑁})
3938olcd 871 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑛𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
4039expcom 414 . . . . . . . . . . . . . . 15 (𝑁 ∈ {𝑛, 𝑚} → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
41403ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
4241com12 32 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
43 simpr3 1195 . . . . . . . . . . . . . . . 16 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑁 ∈ {𝑛, 𝑚})
44 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑚𝑛)
4544necomd 2999 . . . . . . . . . . . . . . . . 17 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑛𝑚)
46 simpr2 1194 . . . . . . . . . . . . . . . . 17 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (𝑛𝑉𝑚𝑉))
47 prproe 4837 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ {𝑛, 𝑚} ∧ 𝑛𝑚 ∧ (𝑛𝑉𝑚𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})
4843, 45, 46, 47syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})
49 r19.42v 3279 . . . . . . . . . . . . . . . 16 (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚}))
5043, 48, 49sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}))
5150orcd 870 . . . . . . . . . . . . . 14 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
5251ex 413 . . . . . . . . . . . . 13 (𝑚𝑛 → ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
5342, 52pm2.61ine 3028 . . . . . . . . . . . 12 ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
54533exp 1118 . . . . . . . . . . 11 (𝑁𝑉 → ((𝑛𝑉𝑚𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
5554ad2antlr 724 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝑛𝑉𝑚𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
5655imp 407 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛𝑉𝑚𝑉)) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
57 eleq2 2827 . . . . . . . . . 10 ((𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑛, 𝑚}))
58 eleq2 2827 . . . . . . . . . . . . 13 ((𝐸𝑖) = {𝑛, 𝑚} → (𝑣 ∈ (𝐸𝑖) ↔ 𝑣 ∈ {𝑛, 𝑚}))
5957, 58anbi12d 631 . . . . . . . . . . . 12 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})))
6059rexbidv 3226 . . . . . . . . . . 11 ((𝐸𝑖) = {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})))
61 eqeq1 2742 . . . . . . . . . . 11 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝐸𝑖) = {𝑁} ↔ {𝑛, 𝑚} = {𝑁}))
6260, 61orbi12d 916 . . . . . . . . . 10 ((𝐸𝑖) = {𝑛, 𝑚} → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) ↔ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
6357, 62imbi12d 345 . . . . . . . . 9 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})) ↔ (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
6456, 63syl5ibrcom 246 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛𝑉𝑚𝑉)) → ((𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6564rexlimdvva 3223 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6624, 65syld 47 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) ∈ (Edg‘𝐺) → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6719, 66mpd 15 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})))
6812, 67impbid 211 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) ↔ 𝑁 ∈ (𝐸𝑖)))
6968rabbidva 3413 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
704, 69eqtrid 2790 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
713, 70eqtrd 2778 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3884  cun 3885  {csn 4561  {cpr 4563   ciun 4924  dom cdm 5589  Fun wfun 6427  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426  UPGraphcupgr 27450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-uhgr 27428  df-upgr 27452
This theorem is referenced by:  numedglnl  27514
  Copyright terms: Public domain W3C validator