MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edglnl Structured version   Visualization version   GIF version

Theorem edglnl 29127
Description: The edges incident with a vertex 𝑁 are the edges joining 𝑁 with other vertices and the loops on 𝑁 in a pseudograph. (Contributed by AV, 18-Dec-2021.)
Hypotheses
Ref Expression
edglnl.v 𝑉 = (Vtx‘𝐺)
edglnl.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
edglnl ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
Distinct variable groups:   𝑣,𝐸   𝑖,𝐺   𝑖,𝑁,𝑣   𝑖,𝑉,𝑣
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑣)

Proof of Theorem edglnl
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrab 5033 . . . 4 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}
21a1i 11 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
32uneq1d 4147 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))
4 unrab 4295 . . 3 ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})}
5 simpl 482 . . . . . . . 8 ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖))
65rexlimivw 3138 . . . . . . 7 (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖))
76a1i 11 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) → 𝑁 ∈ (𝐸𝑖)))
8 snidg 4641 . . . . . . . 8 (𝑁𝑉𝑁 ∈ {𝑁})
98ad2antlr 727 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → 𝑁 ∈ {𝑁})
10 eleq2 2824 . . . . . . 7 ((𝐸𝑖) = {𝑁} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑁}))
119, 10syl5ibrcom 247 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) = {𝑁} → 𝑁 ∈ (𝐸𝑖)))
127, 11jaod 859 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) → 𝑁 ∈ (𝐸𝑖)))
13 upgruhgr 29086 . . . . . . . . 9 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
14 edglnl.e . . . . . . . . . 10 𝐸 = (iEdg‘𝐺)
1514uhgrfun 29050 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun 𝐸)
1613, 15syl 17 . . . . . . . 8 (𝐺 ∈ UPGraph → Fun 𝐸)
1716adantr 480 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → Fun 𝐸)
1814iedgedg 29034 . . . . . . 7 ((Fun 𝐸𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
1917, 18sylan 580 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ∈ (Edg‘𝐺))
20 edglnl.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
21 eqid 2736 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
2220, 21upgredg 29121 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ (𝐸𝑖) ∈ (Edg‘𝐺)) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚})
2322ex 412 . . . . . . . 8 (𝐺 ∈ UPGraph → ((𝐸𝑖) ∈ (Edg‘𝐺) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚}))
2423ad2antrr 726 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) ∈ (Edg‘𝐺) → ∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚}))
25 dfsn2 4619 . . . . . . . . . . . . . . . . . . . . . 22 {𝑛} = {𝑛, 𝑛}
2625eqcomi 2745 . . . . . . . . . . . . . . . . . . . . 21 {𝑛, 𝑛} = {𝑛}
27 elsni 4623 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ {𝑛} → 𝑁 = 𝑛)
28 sneq 4616 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = 𝑛 → {𝑁} = {𝑛})
2928eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = 𝑛 → {𝑛} = {𝑁})
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ {𝑛} → {𝑛} = {𝑁})
3126, 30eqtrid 2783 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ {𝑛} → {𝑛, 𝑛} = {𝑁})
3231, 26eleq2s 2853 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁})
33 preq2 4715 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → {𝑛, 𝑚} = {𝑛, 𝑛})
3433eleq2d 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} ↔ 𝑁 ∈ {𝑛, 𝑛}))
3533eqeq1d 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ({𝑛, 𝑚} = {𝑁} ↔ {𝑛, 𝑛} = {𝑁}))
3634, 35imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → ((𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}) ↔ (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁})))
3732, 36mpbiri 258 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}))
3837imp 406 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝑛𝑁 ∈ {𝑛, 𝑚}) → {𝑛, 𝑚} = {𝑁})
3938olcd 874 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝑛𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
4039expcom 413 . . . . . . . . . . . . . . 15 (𝑁 ∈ {𝑛, 𝑚} → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
41403ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
4241com12 32 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
43 simpr3 1197 . . . . . . . . . . . . . . . 16 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑁 ∈ {𝑛, 𝑚})
44 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑚𝑛)
4544necomd 2988 . . . . . . . . . . . . . . . . 17 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑛𝑚)
46 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (𝑛𝑉𝑚𝑉))
47 prproe 4886 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ {𝑛, 𝑚} ∧ 𝑛𝑚 ∧ (𝑛𝑉𝑚𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})
4843, 45, 46, 47syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})
49 r19.42v 3177 . . . . . . . . . . . . . . . 16 (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚}))
5043, 48, 49sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}))
5150orcd 873 . . . . . . . . . . . . . 14 ((𝑚𝑛 ∧ (𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
5251ex 412 . . . . . . . . . . . . 13 (𝑚𝑛 → ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
5342, 52pm2.61ine 3016 . . . . . . . . . . . 12 ((𝑁𝑉 ∧ (𝑛𝑉𝑚𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))
54533exp 1119 . . . . . . . . . . 11 (𝑁𝑉 → ((𝑛𝑉𝑚𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
5554ad2antlr 727 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝑛𝑉𝑚𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
5655imp 406 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛𝑉𝑚𝑉)) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
57 eleq2 2824 . . . . . . . . . 10 ((𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) ↔ 𝑁 ∈ {𝑛, 𝑚}))
58 eleq2 2824 . . . . . . . . . . . . 13 ((𝐸𝑖) = {𝑛, 𝑚} → (𝑣 ∈ (𝐸𝑖) ↔ 𝑣 ∈ {𝑛, 𝑚}))
5957, 58anbi12d 632 . . . . . . . . . . . 12 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})))
6059rexbidv 3165 . . . . . . . . . . 11 ((𝐸𝑖) = {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})))
61 eqeq1 2740 . . . . . . . . . . 11 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝐸𝑖) = {𝑁} ↔ {𝑛, 𝑚} = {𝑁}))
6260, 61orbi12d 918 . . . . . . . . . 10 ((𝐸𝑖) = {𝑛, 𝑚} → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) ↔ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))
6357, 62imbi12d 344 . . . . . . . . 9 ((𝐸𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})) ↔ (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))))
6456, 63syl5ibrcom 247 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛𝑉𝑚𝑉)) → ((𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6564rexlimdvva 3202 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑛𝑉𝑚𝑉 (𝐸𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6624, 65syld 47 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸𝑖) ∈ (Edg‘𝐺) → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}))))
6719, 66mpd 15 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})))
6812, 67impbid 212 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁}) ↔ 𝑁 ∈ (𝐸𝑖)))
6968rabbidva 3427 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖)) ∨ (𝐸𝑖) = {𝑁})} = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
704, 69eqtrid 2783 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
713, 70eqtrd 2771 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ( 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  {crab 3420  cdif 3928  cun 3929  {csn 4606  {cpr 4608   ciun 4972  dom cdm 5659  Fun wfun 6530  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UHGraphcuhgr 29040  UPGraphcupgr 29064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-edg 29032  df-uhgr 29042  df-upgr 29066
This theorem is referenced by:  numedglnl  29128
  Copyright terms: Public domain W3C validator