Step | Hyp | Ref
| Expression |
1 | | iunrab 4941 |
. . . 4
⊢ ∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} |
2 | 1 | a1i 11 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} = {𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
3 | 2 | uneq1d 4067 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) |
4 | | unrab 4208 |
. . 3
⊢ ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁})} |
5 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) → 𝑁 ∈ (𝐸‘𝑖)) |
6 | 5 | rexlimivw 3206 |
. . . . . . 7
⊢
(∃𝑣 ∈
(𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) → 𝑁 ∈ (𝐸‘𝑖)) |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) → 𝑁 ∈ (𝐸‘𝑖))) |
8 | | snidg 4556 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ {𝑁}) |
9 | 8 | ad2antlr 726 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → 𝑁 ∈ {𝑁}) |
10 | | eleq2 2840 |
. . . . . . 7
⊢ ((𝐸‘𝑖) = {𝑁} → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ {𝑁})) |
11 | 9, 10 | syl5ibrcom 250 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸‘𝑖) = {𝑁} → 𝑁 ∈ (𝐸‘𝑖))) |
12 | 7, 11 | jaod 856 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁}) → 𝑁 ∈ (𝐸‘𝑖))) |
13 | | upgruhgr 26994 |
. . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → 𝐺 ∈
UHGraph) |
14 | | edglnl.e |
. . . . . . . . . 10
⊢ 𝐸 = (iEdg‘𝐺) |
15 | 14 | uhgrfun 26958 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
16 | 13, 15 | syl 17 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
17 | 16 | adantr 484 |
. . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐸) |
18 | 14 | iedgedg 26942 |
. . . . . . 7
⊢ ((Fun
𝐸 ∧ 𝑖 ∈ dom 𝐸) → (𝐸‘𝑖) ∈ (Edg‘𝐺)) |
19 | 17, 18 | sylan 583 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝐸‘𝑖) ∈ (Edg‘𝐺)) |
20 | | edglnl.v |
. . . . . . . . . 10
⊢ 𝑉 = (Vtx‘𝐺) |
21 | | eqid 2758 |
. . . . . . . . . 10
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
22 | 20, 21 | upgredg 27029 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UPGraph ∧ (𝐸‘𝑖) ∈ (Edg‘𝐺)) → ∃𝑛 ∈ 𝑉 ∃𝑚 ∈ 𝑉 (𝐸‘𝑖) = {𝑛, 𝑚}) |
23 | 22 | ex 416 |
. . . . . . . 8
⊢ (𝐺 ∈ UPGraph → ((𝐸‘𝑖) ∈ (Edg‘𝐺) → ∃𝑛 ∈ 𝑉 ∃𝑚 ∈ 𝑉 (𝐸‘𝑖) = {𝑛, 𝑚})) |
24 | 23 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸‘𝑖) ∈ (Edg‘𝐺) → ∃𝑛 ∈ 𝑉 ∃𝑚 ∈ 𝑉 (𝐸‘𝑖) = {𝑛, 𝑚})) |
25 | | dfsn2 4535 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑛} = {𝑛, 𝑛} |
26 | 25 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑛, 𝑛} = {𝑛} |
27 | | elsni 4539 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ {𝑛} → 𝑁 = 𝑛) |
28 | | sneq 4532 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 = 𝑛 → {𝑁} = {𝑛}) |
29 | 28 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 = 𝑛 → {𝑛} = {𝑁}) |
30 | 27, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ {𝑛} → {𝑛} = {𝑁}) |
31 | 26, 30 | syl5eq 2805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ {𝑛} → {𝑛, 𝑛} = {𝑁}) |
32 | 31, 26 | eleq2s 2870 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁}) |
33 | | preq2 4627 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑛 → {𝑛, 𝑚} = {𝑛, 𝑛}) |
34 | 33 | eleq2d 2837 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} ↔ 𝑁 ∈ {𝑛, 𝑛})) |
35 | 33 | eqeq1d 2760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → ({𝑛, 𝑚} = {𝑁} ↔ {𝑛, 𝑛} = {𝑁})) |
36 | 34, 35 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → ((𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁}) ↔ (𝑁 ∈ {𝑛, 𝑛} → {𝑛, 𝑛} = {𝑁}))) |
37 | 32, 36 | mpbiri 261 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑁 ∈ {𝑛, 𝑚} → {𝑛, 𝑚} = {𝑁})) |
38 | 37 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 = 𝑛 ∧ 𝑁 ∈ {𝑛, 𝑚}) → {𝑛, 𝑚} = {𝑁}) |
39 | 38 | olcd 871 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 𝑛 ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})) |
40 | 39 | expcom 417 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ {𝑛, 𝑚} → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))) |
41 | 40 | 3ad2ant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (𝑚 = 𝑛 → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))) |
42 | 41 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))) |
43 | | simpr3 1193 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑁 ∈ {𝑛, 𝑚}) |
44 | | simpl 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑚 ≠ 𝑛) |
45 | 44 | necomd 3006 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → 𝑛 ≠ 𝑚) |
46 | | simpr2 1192 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉)) |
47 | | prproe 4796 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ {𝑛, 𝑚} ∧ 𝑛 ≠ 𝑚 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚}) |
48 | 43, 45, 46, 47 | syl3anc 1368 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚}) |
49 | | r19.42v 3268 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑣 ∈
(𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ {𝑛, 𝑚})) |
50 | 43, 48, 49 | sylanbrc 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚})) |
51 | 50 | orcd 870 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ≠ 𝑛 ∧ (𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚})) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})) |
52 | 51 | ex 416 |
. . . . . . . . . . . . 13
⊢ (𝑚 ≠ 𝑛 → ((𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))) |
53 | 42, 52 | pm2.61ine 3034 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ 𝑉 ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) ∧ 𝑁 ∈ {𝑛, 𝑚}) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})) |
54 | 53 | 3exp 1116 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ 𝑉 → ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))) |
55 | 54 | ad2antlr 726 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))) |
56 | 55 | imp 410 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉)) → (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))) |
57 | | eleq2 2840 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ {𝑛, 𝑚})) |
58 | | eleq2 2840 |
. . . . . . . . . . . . 13
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → (𝑣 ∈ (𝐸‘𝑖) ↔ 𝑣 ∈ {𝑛, 𝑚})) |
59 | 57, 58 | anbi12d 633 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}))) |
60 | 59 | rexbidv 3221 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}))) |
61 | | eqeq1 2762 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → ((𝐸‘𝑖) = {𝑁} ↔ {𝑛, 𝑚} = {𝑁})) |
62 | 60, 61 | orbi12d 916 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁}) ↔ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁}))) |
63 | 57, 62 | imbi12d 348 |
. . . . . . . . 9
⊢ ((𝐸‘𝑖) = {𝑛, 𝑚} → ((𝑁 ∈ (𝐸‘𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁})) ↔ (𝑁 ∈ {𝑛, 𝑚} → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ {𝑛, 𝑚} ∧ 𝑣 ∈ {𝑛, 𝑚}) ∨ {𝑛, 𝑚} = {𝑁})))) |
64 | 56, 63 | syl5ibrcom 250 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) ∧ (𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉)) → ((𝐸‘𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸‘𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁})))) |
65 | 64 | rexlimdvva 3218 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑛 ∈ 𝑉 ∃𝑚 ∈ 𝑉 (𝐸‘𝑖) = {𝑛, 𝑚} → (𝑁 ∈ (𝐸‘𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁})))) |
66 | 24, 65 | syld 47 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((𝐸‘𝑖) ∈ (Edg‘𝐺) → (𝑁 ∈ (𝐸‘𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁})))) |
67 | 19, 66 | mpd 15 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸‘𝑖) → (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁}))) |
68 | 12, 67 | impbid 215 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑖 ∈ dom 𝐸) → ((∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁}) ↔ 𝑁 ∈ (𝐸‘𝑖))) |
69 | 68 | rabbidva 3390 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → {𝑖 ∈ dom 𝐸 ∣ (∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∨ (𝐸‘𝑖) = {𝑁})} = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
70 | 4, 69 | syl5eq 2805 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ({𝑖 ∈ dom 𝐸 ∣ ∃𝑣 ∈ (𝑉 ∖ {𝑁})(𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
71 | 3, 70 | eqtrd 2793 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |