| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4720 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
| 2 | prcom 4692 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrdi 2838 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: prel12g 4824 prproe 4865 unisn2 5262 fr2nr 5608 fpr2g 7167 f1prex 7241 fvf1pr 7264 pw2f1olem 9022 hashprdifel 14339 gcdcllem3 16447 mgm2nsgrplem1 18827 mgm2nsgrplem2 18828 mgm2nsgrplem3 18829 sgrp2nmndlem1 18832 sgrp2rid2 18835 pmtrprfv 19367 m2detleib 22551 indistopon 22921 pptbas 22928 coseq0negpitopi 26445 uhgr2edg 29188 umgrvad2edg 29193 uspgr2v1e2w 29231 usgr2v1e2w 29232 nb3grprlem1 29360 nb3grprlem2 29361 1hegrvtxdg1 29488 cyc3genpmlem 33123 elrspunsn 33393 prsiga 34114 bj-prmoore 37096 ftc1anclem8 37687 pr2el2 43533 pr2eldif2 43537 fourierdlem54 46151 prsal 46309 sge0pr 46385 imarnf1pr 47276 paireqne 47505 stgrnbgr0 47956 1hegrlfgr 48113 lubprlem 48943 fucoppcffth 49393 uobeqterm 49528 2arwcatlem4 49580 2arwcat 49582 incat 49583 |
| Copyright terms: Public domain | W3C validator |