| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4726 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
| 2 | prcom 4698 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrdi 2839 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cpr 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3921 df-sn 4592 df-pr 4594 |
| This theorem is referenced by: prel12g 4830 prproe 4871 unisn2 5269 fr2nr 5617 fpr2g 7187 f1prex 7261 fvf1pr 7284 pw2f1olem 9049 hashprdifel 14369 gcdcllem3 16477 mgm2nsgrplem1 18851 mgm2nsgrplem2 18852 mgm2nsgrplem3 18853 sgrp2nmndlem1 18856 sgrp2rid2 18859 pmtrprfv 19389 m2detleib 22524 indistopon 22894 pptbas 22901 coseq0negpitopi 26418 uhgr2edg 29141 umgrvad2edg 29146 uspgr2v1e2w 29184 usgr2v1e2w 29185 nb3grprlem1 29313 nb3grprlem2 29314 1hegrvtxdg1 29441 cyc3genpmlem 33114 elrspunsn 33406 prsiga 34127 bj-prmoore 37098 ftc1anclem8 37689 pr2el2 43533 pr2eldif2 43537 fourierdlem54 46151 prsal 46309 sge0pr 46385 imarnf1pr 47273 paireqne 47502 stgrnbgr0 47953 1hegrlfgr 48110 lubprlem 48940 fucoppcffth 49390 uobeqterm 49525 2arwcatlem4 49577 2arwcat 49579 incat 49580 |
| Copyright terms: Public domain | W3C validator |