MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prid2g Structured version   Visualization version   GIF version

Theorem prid2g 4766
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid2g (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})

Proof of Theorem prid2g
StepHypRef Expression
1 prid1g 4765 . 2 (𝐵𝑉𝐵 ∈ {𝐵, 𝐴})
2 prcom 4737 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
31, 2eleqtrdi 2844 1 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  prel12g  4865  prproe  4907  unisn2  5313  fr2nr  5655  fpr2g  7213  f1prex  7282  pw2f1olem  9076  hashprdifel  14358  gcdcllem3  16442  mgm2nsgrplem1  18799  mgm2nsgrplem2  18800  mgm2nsgrplem3  18801  sgrp2nmndlem1  18804  sgrp2rid2  18807  pmtrprfv  19321  m2detleib  22133  indistopon  22504  pptbas  22511  coseq0negpitopi  26013  uhgr2edg  28465  umgrvad2edg  28470  uspgr2v1e2w  28508  usgr2v1e2w  28509  nb3grprlem1  28637  nb3grprlem2  28638  1hegrvtxdg1  28764  cyc3genpmlem  32310  elrspunsn  32547  prsiga  33129  bj-prmoore  35996  ftc1anclem8  36568  pr2el2  42302  pr2eldif2  42306  fourierdlem54  44876  prsal  45034  sge0pr  45110  imarnf1pr  45990  paireqne  46179  1hegrlfgr  46510  lubprlem  47595
  Copyright terms: Public domain W3C validator