| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4742 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
| 2 | prcom 4714 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrdi 2843 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 {cpr 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-sn 4609 df-pr 4611 |
| This theorem is referenced by: prel12g 4846 prproe 4887 unisn2 5294 fr2nr 5644 fpr2g 7214 f1prex 7287 fvf1pr 7310 pw2f1olem 9099 hashprdifel 14420 gcdcllem3 16521 mgm2nsgrplem1 18905 mgm2nsgrplem2 18906 mgm2nsgrplem3 18907 sgrp2nmndlem1 18910 sgrp2rid2 18913 pmtrprfv 19444 m2detleib 22604 indistopon 22974 pptbas 22981 coseq0negpitopi 26500 uhgr2edg 29172 umgrvad2edg 29177 uspgr2v1e2w 29215 usgr2v1e2w 29216 nb3grprlem1 29344 nb3grprlem2 29345 1hegrvtxdg1 29472 cyc3genpmlem 33117 elrspunsn 33398 prsiga 34073 bj-prmoore 37057 ftc1anclem8 37648 pr2el2 43509 pr2eldif2 43513 fourierdlem54 46120 prsal 46278 sge0pr 46354 imarnf1pr 47240 paireqne 47444 stgrnbgr0 47877 1hegrlfgr 47994 lubprlem 48807 |
| Copyright terms: Public domain | W3C validator |