Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prid2g Structured version   Visualization version   GIF version

Theorem prid2g 4691
 Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid2g (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})

Proof of Theorem prid2g
StepHypRef Expression
1 prid1g 4690 . 2 (𝐵𝑉𝐵 ∈ {𝐵, 𝐴})
2 prcom 4662 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
31, 2eleqtrdi 2923 1 (𝐵𝑉𝐵 ∈ {𝐴, 𝐵})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2110  {cpr 4563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3497  df-un 3941  df-sn 4562  df-pr 4564 This theorem is referenced by:  prel12g  4788  prproe  4830  unisn2  5209  fr2nr  5528  fpr2g  6968  f1prex  7034  pw2f1olem  8615  hashprdifel  13753  gcdcllem3  15844  mgm2nsgrplem1  18077  mgm2nsgrplem2  18078  mgm2nsgrplem3  18079  sgrp2nmndlem1  18082  sgrp2rid2  18085  pmtrprfv  18575  m2detleib  21234  indistopon  21603  pptbas  21610  coseq0negpitopi  25083  uhgr2edg  26984  umgrvad2edg  26989  uspgr2v1e2w  27027  usgr2v1e2w  27028  nb3grprlem1  27156  nb3grprlem2  27157  1hegrvtxdg1  27283  cyc3genpmlem  30788  prsiga  31385  bj-prmoore  34401  ftc1anclem8  34968  pr2el2  39903  pr2eldif2  39907  fourierdlem54  42438  prsal  42596  sge0pr  42669  imarnf1pr  43474  paireqne  43666  1hegrlfgr  44000
 Copyright terms: Public domain W3C validator