| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4710 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
| 2 | prcom 4682 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrdi 2841 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: prel12g 4813 prproe 4854 unisn2 5248 fr2nr 5591 fpr2g 7145 f1prex 7218 fvf1pr 7241 pw2f1olem 8994 hashprdifel 14305 gcdcllem3 16412 chnccat 18532 mgm2nsgrplem1 18826 mgm2nsgrplem2 18827 mgm2nsgrplem3 18828 sgrp2nmndlem1 18831 sgrp2rid2 18834 pmtrprfv 19365 m2detleib 22546 indistopon 22916 pptbas 22923 coseq0negpitopi 26439 uhgr2edg 29186 umgrvad2edg 29191 uspgr2v1e2w 29229 usgr2v1e2w 29230 nb3grprlem1 29358 nb3grprlem2 29359 1hegrvtxdg1 29486 cyc3genpmlem 33120 elrspunsn 33394 prsiga 34144 bj-prmoore 37159 ftc1anclem8 37750 pr2el2 43654 pr2eldif2 43658 fourierdlem54 46268 prsal 46426 sge0pr 46502 imarnf1pr 47392 paireqne 47621 stgrnbgr0 48074 grlimprclnbgr 48106 1hegrlfgr 48242 lubprlem 49072 fucoppcffth 49522 uobeqterm 49657 2arwcatlem4 49709 2arwcat 49711 incat 49712 |
| Copyright terms: Public domain | W3C validator |