Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4696 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
2 | prcom 4668 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
3 | 1, 2 | eleqtrdi 2849 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: prel12g 4794 prproe 4837 unisn2 5236 fr2nr 5567 fpr2g 7087 f1prex 7156 pw2f1olem 8863 hashprdifel 14113 gcdcllem3 16208 mgm2nsgrplem1 18557 mgm2nsgrplem2 18558 mgm2nsgrplem3 18559 sgrp2nmndlem1 18562 sgrp2rid2 18565 pmtrprfv 19061 m2detleib 21780 indistopon 22151 pptbas 22158 coseq0negpitopi 25660 uhgr2edg 27575 umgrvad2edg 27580 uspgr2v1e2w 27618 usgr2v1e2w 27619 nb3grprlem1 27747 nb3grprlem2 27748 1hegrvtxdg1 27874 cyc3genpmlem 31418 prsiga 32099 bj-prmoore 35286 ftc1anclem8 35857 pr2el2 41158 pr2eldif2 41162 fourierdlem54 43701 prsal 43859 sge0pr 43932 imarnf1pr 44774 paireqne 44963 1hegrlfgr 45294 lubprlem 46256 |
Copyright terms: Public domain | W3C validator |