![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4765 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
2 | prcom 4737 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
3 | 1, 2 | eleqtrdi 2849 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: prel12g 4869 prproe 4910 unisn2 5318 fr2nr 5666 fpr2g 7231 f1prex 7304 fvf1pr 7327 pw2f1olem 9115 hashprdifel 14434 gcdcllem3 16535 mgm2nsgrplem1 18944 mgm2nsgrplem2 18945 mgm2nsgrplem3 18946 sgrp2nmndlem1 18949 sgrp2rid2 18952 pmtrprfv 19486 m2detleib 22653 indistopon 23024 pptbas 23031 coseq0negpitopi 26560 uhgr2edg 29240 umgrvad2edg 29245 uspgr2v1e2w 29283 usgr2v1e2w 29284 nb3grprlem1 29412 nb3grprlem2 29413 1hegrvtxdg1 29540 cyc3genpmlem 33154 elrspunsn 33437 prsiga 34112 bj-prmoore 37098 ftc1anclem8 37687 pr2el2 43541 pr2eldif2 43545 fourierdlem54 46116 prsal 46274 sge0pr 46350 imarnf1pr 47232 paireqne 47436 stgrnbgr0 47867 1hegrlfgr 47976 lubprlem 48759 |
Copyright terms: Public domain | W3C validator |