![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4785 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
2 | prcom 4757 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
3 | 1, 2 | eleqtrdi 2848 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3484 df-un 3975 df-sn 4649 df-pr 4651 |
This theorem is referenced by: prel12g 4888 prproe 4929 unisn2 5333 fr2nr 5677 fpr2g 7246 f1prex 7318 fvf1pr 7340 pw2f1olem 9138 hashprdifel 14443 gcdcllem3 16541 mgm2nsgrplem1 18948 mgm2nsgrplem2 18949 mgm2nsgrplem3 18950 sgrp2nmndlem1 18953 sgrp2rid2 18956 pmtrprfv 19490 m2detleib 22651 indistopon 23022 pptbas 23029 coseq0negpitopi 26555 uhgr2edg 29234 umgrvad2edg 29239 uspgr2v1e2w 29277 usgr2v1e2w 29278 nb3grprlem1 29406 nb3grprlem2 29407 1hegrvtxdg1 29534 cyc3genpmlem 33136 elrspunsn 33414 prsiga 34087 bj-prmoore 37029 ftc1anclem8 37608 pr2el2 43453 pr2eldif2 43457 fourierdlem54 46015 prsal 46173 sge0pr 46249 imarnf1pr 47129 paireqne 47317 1hegrlfgr 47773 lubprlem 48560 |
Copyright terms: Public domain | W3C validator |