| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid2g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid2g | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1g 4741 | . 2 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐴}) | |
| 2 | prcom 4713 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 3 | 1, 2 | eleqtrdi 2845 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: prel12g 4845 prproe 4886 unisn2 5287 fr2nr 5636 fpr2g 7208 f1prex 7282 fvf1pr 7305 pw2f1olem 9095 hashprdifel 14421 gcdcllem3 16525 mgm2nsgrplem1 18901 mgm2nsgrplem2 18902 mgm2nsgrplem3 18903 sgrp2nmndlem1 18906 sgrp2rid2 18909 pmtrprfv 19439 m2detleib 22574 indistopon 22944 pptbas 22951 coseq0negpitopi 26469 uhgr2edg 29192 umgrvad2edg 29197 uspgr2v1e2w 29235 usgr2v1e2w 29236 nb3grprlem1 29364 nb3grprlem2 29365 1hegrvtxdg1 29492 cyc3genpmlem 33167 elrspunsn 33449 prsiga 34167 bj-prmoore 37138 ftc1anclem8 37729 pr2el2 43550 pr2eldif2 43554 fourierdlem54 46169 prsal 46327 sge0pr 46403 imarnf1pr 47291 paireqne 47505 stgrnbgr0 47956 1hegrlfgr 48087 lubprlem 48916 2arwcatlem4 49455 2arwcat 49457 incat 49458 |
| Copyright terms: Public domain | W3C validator |