| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprrl | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
| Ref | Expression |
|---|---|
| simprrl | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜒) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜒) |
| Copyright terms: Public domain | W3C validator |