MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psref2 Structured version   Visualization version   GIF version

Theorem psref2 18580
Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
psref2 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))

Proof of Theorem psref2
StepHypRef Expression
1 isps 18578 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
21ibi 267 . 2 (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅)))
32simp3d 1144 1 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cin 3925  wss 3926   cuni 4883   I cid 5547  ccnv 5653  cres 5656  ccom 5658  Rel wrel 5659  PosetRelcps 18574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-res 5666  df-ps 18576
This theorem is referenced by:  pslem  18582  cnvps  18588  tsrdir  18614
  Copyright terms: Public domain W3C validator