| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psref2 | Structured version Visualization version GIF version | ||
| Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| psref2 | ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isps 18613 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
| 3 | 2 | simp3d 1145 | 1 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 ∪ cuni 4907 I cid 5577 ◡ccnv 5684 ↾ cres 5687 ∘ ccom 5689 Rel wrel 5690 PosetRelcps 18609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-res 5697 df-ps 18611 |
| This theorem is referenced by: pslem 18617 cnvps 18623 tsrdir 18649 |
| Copyright terms: Public domain | W3C validator |