MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psref2 Structured version   Visualization version   GIF version

Theorem psref2 18519
Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
psref2 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))

Proof of Theorem psref2
StepHypRef Expression
1 isps 18517 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
21ibi 266 . 2 (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅)))
32simp3d 1144 1 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  cin 3946  wss 3947   cuni 4907   I cid 5572  ccnv 5674  cres 5677  ccom 5679  Rel wrel 5680  PosetRelcps 18513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3954  df-ss 3964  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-res 5687  df-ps 18515
This theorem is referenced by:  pslem  18521  cnvps  18527  tsrdir  18553
  Copyright terms: Public domain W3C validator