MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvps Structured version   Visualization version   GIF version

Theorem cnvps 18561
Description: The converse of a poset is a poset. In the general case (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 18562 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
cnvps (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)

Proof of Theorem cnvps
StepHypRef Expression
1 relcnv 6102 . . 3 Rel 𝑅
21a1i 11 . 2 (𝑅 ∈ PosetRel → Rel 𝑅)
3 cnvco 5882 . . 3 (𝑅𝑅) = (𝑅𝑅)
4 pstr2 18554 . . . 4 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
5 cnvss 5869 . . . 4 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
64, 5syl 17 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
73, 6eqsstrrid 4027 . 2 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
8 psrel 18552 . . . . . 6 (𝑅 ∈ PosetRel → Rel 𝑅)
9 dfrel2 6187 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
108, 9sylib 217 . . . . 5 (𝑅 ∈ PosetRel → 𝑅 = 𝑅)
1110ineq2d 4208 . . . 4 (𝑅 ∈ PosetRel → (𝑅𝑅) = (𝑅𝑅))
12 incom 4197 . . . 4 (𝑅𝑅) = (𝑅𝑅)
1311, 12eqtrdi 2783 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = (𝑅𝑅))
14 psref2 18553 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
15 relcnvfld 6278 . . . . 5 (Rel 𝑅 𝑅 = 𝑅)
168, 15syl 17 . . . 4 (𝑅 ∈ PosetRel → 𝑅 = 𝑅)
1716reseq2d 5979 . . 3 (𝑅 ∈ PosetRel → ( I ↾ 𝑅) = ( I ↾ 𝑅))
1813, 14, 173eqtrd 2771 . 2 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
19 cnvexg 7926 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ V)
20 isps 18551 . . 3 (𝑅 ∈ V → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
2119, 20syl 17 . 2 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
222, 7, 18, 21mpbir3and 1340 1 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3469  cin 3943  wss 3944   cuni 4903   I cid 5569  ccnv 5671  cres 5674  ccom 5676  Rel wrel 5677  PosetRelcps 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ps 18549
This theorem is referenced by:  cnvpsb  18562  cnvtsr  18571  ordtcnv  23092  xrge0iifhmeo  33473
  Copyright terms: Public domain W3C validator