![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvps | Structured version Visualization version GIF version |
Description: The converse of a poset is a poset. In the general case (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 17527 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
cnvps | ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5721 | . . 3 ⊢ Rel ◡𝑅 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → Rel ◡𝑅) |
3 | cnvco 5512 | . . 3 ⊢ ◡(𝑅 ∘ 𝑅) = (◡𝑅 ∘ ◡𝑅) | |
4 | pstr2 17519 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
5 | cnvss 5499 | . . . 4 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ◡(𝑅 ∘ 𝑅) ⊆ ◡𝑅) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡(𝑅 ∘ 𝑅) ⊆ ◡𝑅) |
7 | 3, 6 | syl5eqssr 3847 | . 2 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅) |
8 | psrel 17517 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
9 | dfrel2 5801 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
10 | 8, 9 | sylib 210 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → ◡◡𝑅 = 𝑅) |
11 | 10 | ineq2d 4013 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∩ ◡◡𝑅) = (◡𝑅 ∩ 𝑅)) |
12 | incom 4004 | . . . 4 ⊢ (◡𝑅 ∩ 𝑅) = (𝑅 ∩ ◡𝑅) | |
13 | 11, 12 | syl6eq 2850 | . . 3 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∩ ◡◡𝑅) = (𝑅 ∩ ◡𝑅)) |
14 | psref2 17518 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) | |
15 | relcnvfld 5886 | . . . . 5 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) | |
16 | 8, 15 | syl 17 | . . . 4 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) |
17 | 16 | reseq2d 5601 | . . 3 ⊢ (𝑅 ∈ PosetRel → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ ∪ ∪ ◡𝑅)) |
18 | 13, 14, 17 | 3eqtrd 2838 | . 2 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∩ ◡◡𝑅) = ( I ↾ ∪ ∪ ◡𝑅)) |
19 | cnvexg 7348 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ V) | |
20 | isps 17516 | . . 3 ⊢ (◡𝑅 ∈ V → (◡𝑅 ∈ PosetRel ↔ (Rel ◡𝑅 ∧ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 ∧ (◡𝑅 ∩ ◡◡𝑅) = ( I ↾ ∪ ∪ ◡𝑅)))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∈ PosetRel ↔ (Rel ◡𝑅 ∧ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 ∧ (◡𝑅 ∩ ◡◡𝑅) = ( I ↾ ∪ ∪ ◡𝑅)))) |
22 | 2, 7, 18, 21 | mpbir3and 1443 | 1 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3386 ∩ cin 3769 ⊆ wss 3770 ∪ cuni 4629 I cid 5220 ◡ccnv 5312 ↾ cres 5315 ∘ ccom 5317 Rel wrel 5318 PosetRelcps 17512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ps 17514 |
This theorem is referenced by: cnvpsb 17527 cnvtsr 17536 ordtcnv 21333 xrge0iifhmeo 30497 |
Copyright terms: Public domain | W3C validator |