MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvps Structured version   Visualization version   GIF version

Theorem cnvps 17526
Description: The converse of a poset is a poset. In the general case (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 17527 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
cnvps (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)

Proof of Theorem cnvps
StepHypRef Expression
1 relcnv 5721 . . 3 Rel 𝑅
21a1i 11 . 2 (𝑅 ∈ PosetRel → Rel 𝑅)
3 cnvco 5512 . . 3 (𝑅𝑅) = (𝑅𝑅)
4 pstr2 17519 . . . 4 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
5 cnvss 5499 . . . 4 ((𝑅𝑅) ⊆ 𝑅(𝑅𝑅) ⊆ 𝑅)
64, 5syl 17 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
73, 6syl5eqssr 3847 . 2 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
8 psrel 17517 . . . . . 6 (𝑅 ∈ PosetRel → Rel 𝑅)
9 dfrel2 5801 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
108, 9sylib 210 . . . . 5 (𝑅 ∈ PosetRel → 𝑅 = 𝑅)
1110ineq2d 4013 . . . 4 (𝑅 ∈ PosetRel → (𝑅𝑅) = (𝑅𝑅))
12 incom 4004 . . . 4 (𝑅𝑅) = (𝑅𝑅)
1311, 12syl6eq 2850 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = (𝑅𝑅))
14 psref2 17518 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
15 relcnvfld 5886 . . . . 5 (Rel 𝑅 𝑅 = 𝑅)
168, 15syl 17 . . . 4 (𝑅 ∈ PosetRel → 𝑅 = 𝑅)
1716reseq2d 5601 . . 3 (𝑅 ∈ PosetRel → ( I ↾ 𝑅) = ( I ↾ 𝑅))
1813, 14, 173eqtrd 2838 . 2 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
19 cnvexg 7348 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ V)
20 isps 17516 . . 3 (𝑅 ∈ V → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
2119, 20syl 17 . 2 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
222, 7, 18, 21mpbir3and 1443 1 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3386  cin 3769  wss 3770   cuni 4629   I cid 5220  ccnv 5312  cres 5315  ccom 5317  Rel wrel 5318  PosetRelcps 17512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ps 17514
This theorem is referenced by:  cnvpsb  17527  cnvtsr  17536  ordtcnv  21333  xrge0iifhmeo  30497
  Copyright terms: Public domain W3C validator