Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvps | Structured version Visualization version GIF version |
Description: The converse of a poset is a poset. In the general case (◡𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel) is not true. See cnvpsb 18212 for a special case where the property holds. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
cnvps | ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . . 3 ⊢ Rel ◡𝑅 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ PosetRel → Rel ◡𝑅) |
3 | cnvco 5783 | . . 3 ⊢ ◡(𝑅 ∘ 𝑅) = (◡𝑅 ∘ ◡𝑅) | |
4 | pstr2 18204 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
5 | cnvss 5770 | . . . 4 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ◡(𝑅 ∘ 𝑅) ⊆ ◡𝑅) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡(𝑅 ∘ 𝑅) ⊆ ◡𝑅) |
7 | 3, 6 | eqsstrrid 3966 | . 2 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅) |
8 | psrel 18202 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
9 | dfrel2 6081 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
10 | 8, 9 | sylib 217 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → ◡◡𝑅 = 𝑅) |
11 | 10 | ineq2d 4143 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∩ ◡◡𝑅) = (◡𝑅 ∩ 𝑅)) |
12 | incom 4131 | . . . 4 ⊢ (◡𝑅 ∩ 𝑅) = (𝑅 ∩ ◡𝑅) | |
13 | 11, 12 | eqtrdi 2795 | . . 3 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∩ ◡◡𝑅) = (𝑅 ∩ ◡𝑅)) |
14 | psref2 18203 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)) | |
15 | relcnvfld 6172 | . . . . 5 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) | |
16 | 8, 15 | syl 17 | . . . 4 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) |
17 | 16 | reseq2d 5880 | . . 3 ⊢ (𝑅 ∈ PosetRel → ( I ↾ ∪ ∪ 𝑅) = ( I ↾ ∪ ∪ ◡𝑅)) |
18 | 13, 14, 17 | 3eqtrd 2782 | . 2 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∩ ◡◡𝑅) = ( I ↾ ∪ ∪ ◡𝑅)) |
19 | cnvexg 7745 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ V) | |
20 | isps 18201 | . . 3 ⊢ (◡𝑅 ∈ V → (◡𝑅 ∈ PosetRel ↔ (Rel ◡𝑅 ∧ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 ∧ (◡𝑅 ∩ ◡◡𝑅) = ( I ↾ ∪ ∪ ◡𝑅)))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ (𝑅 ∈ PosetRel → (◡𝑅 ∈ PosetRel ↔ (Rel ◡𝑅 ∧ (◡𝑅 ∘ ◡𝑅) ⊆ ◡𝑅 ∧ (◡𝑅 ∩ ◡◡𝑅) = ( I ↾ ∪ ∪ ◡𝑅)))) |
22 | 2, 7, 18, 21 | mpbir3and 1340 | 1 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 PosetRelcps 18197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ps 18199 |
This theorem is referenced by: cnvpsb 18212 cnvtsr 18221 ordtcnv 22260 xrge0iifhmeo 31788 |
Copyright terms: Public domain | W3C validator |