| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrel | Structured version Visualization version GIF version | ||
| Description: A poset is a relation. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| psrel | ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isps 18534 | . . 3 ⊢ (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴))) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 ∪ cuni 4874 I cid 5535 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 Rel wrel 5646 PosetRelcps 18530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-res 5653 df-ps 18532 |
| This theorem is referenced by: pslem 18538 cnvps 18544 psss 18546 cnvtsr 18554 tsrdir 18570 |
| Copyright terms: Public domain | W3C validator |