Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrel | Structured version Visualization version GIF version |
Description: A poset is a relation. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
psrel | ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps 18201 | . . 3 ⊢ (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴)))) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴))) |
3 | 2 | simp1d 1140 | 1 ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 I cid 5479 ◡ccnv 5579 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 PosetRelcps 18197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-res 5592 df-ps 18199 |
This theorem is referenced by: pslem 18205 cnvps 18211 psss 18213 cnvtsr 18221 tsrdir 18237 |
Copyright terms: Public domain | W3C validator |