| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrel | Structured version Visualization version GIF version | ||
| Description: A poset is a relation. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| psrel | ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isps 18476 | . . 3 ⊢ (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴))) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ∪ cuni 4858 I cid 5513 ◡ccnv 5618 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 PosetRelcps 18472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-res 5631 df-ps 18474 |
| This theorem is referenced by: pslem 18480 cnvps 18486 psss 18488 cnvtsr 18496 tsrdir 18512 |
| Copyright terms: Public domain | W3C validator |