MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrel Structured version   Visualization version   GIF version

Theorem psrel 18527
Description: A poset is a relation. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psrel (𝐴 ∈ PosetRel → Rel 𝐴)

Proof of Theorem psrel
StepHypRef Expression
1 isps 18526 . . 3 (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴))))
21ibi 267 . 2 (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴)))
32simp1d 1141 1 (𝐴 ∈ PosetRel → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cin 3947  wss 3948   cuni 4908   I cid 5573  ccnv 5675  cres 5678  ccom 5680  Rel wrel 5681  PosetRelcps 18522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-in 3955  df-ss 3965  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-res 5688  df-ps 18524
This theorem is referenced by:  pslem  18530  cnvps  18536  psss  18538  cnvtsr  18546  tsrdir  18562
  Copyright terms: Public domain W3C validator