| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrel | Structured version Visualization version GIF version | ||
| Description: A poset is a relation. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| psrel | ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isps 18471 | . . 3 ⊢ (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴))) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 ∪ cuni 4859 I cid 5510 ◡ccnv 5615 ↾ cres 5618 ∘ ccom 5620 Rel wrel 5621 PosetRelcps 18467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-res 5628 df-ps 18469 |
| This theorem is referenced by: pslem 18475 cnvps 18481 psss 18483 cnvtsr 18491 tsrdir 18507 |
| Copyright terms: Public domain | W3C validator |