MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrel Structured version   Visualization version   GIF version

Theorem psrel 18639
Description: A poset is a relation. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psrel (𝐴 ∈ PosetRel → Rel 𝐴)

Proof of Theorem psrel
StepHypRef Expression
1 isps 18638 . . 3 (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴))))
21ibi 267 . 2 (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴)))
32simp1d 1142 1 (𝐴 ∈ PosetRel → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976   cuni 4931   I cid 5592  ccnv 5699  cres 5702  ccom 5704  Rel wrel 5705  PosetRelcps 18634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-res 5712  df-ps 18636
This theorem is referenced by:  pslem  18642  cnvps  18648  psss  18650  cnvtsr  18658  tsrdir  18674
  Copyright terms: Public domain W3C validator