MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrel Structured version   Visualization version   GIF version

Theorem psrel 18472
Description: A poset is a relation. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psrel (𝐴 ∈ PosetRel → Rel 𝐴)

Proof of Theorem psrel
StepHypRef Expression
1 isps 18471 . . 3 (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴))))
21ibi 267 . 2 (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴)))
32simp1d 1142 1 (𝐴 ∈ PosetRel → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902   cuni 4859   I cid 5510  ccnv 5615  cres 5618  ccom 5620  Rel wrel 5621  PosetRelcps 18467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-res 5628  df-ps 18469
This theorem is referenced by:  pslem  18475  cnvps  18481  psss  18483  cnvtsr  18491  tsrdir  18507
  Copyright terms: Public domain W3C validator