MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrel Structured version   Visualization version   GIF version

Theorem psrel 17813
Description: A poset is a relation. (Contributed by NM, 12-May-2008.)
Assertion
Ref Expression
psrel (𝐴 ∈ PosetRel → Rel 𝐴)

Proof of Theorem psrel
StepHypRef Expression
1 isps 17812 . . 3 (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴))))
21ibi 270 . 2 (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ 𝐴 ∧ (𝐴𝐴) = ( I ↾ 𝐴)))
32simp1d 1139 1 (𝐴 ∈ PosetRel → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  cin 3918  wss 3919   cuni 4824   I cid 5446  ccnv 5541  cres 5544  ccom 5546  Rel wrel 5547  PosetRelcps 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-rab 3142  df-v 3482  df-in 3926  df-ss 3936  df-uni 4825  df-br 5053  df-opab 5115  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-res 5554  df-ps 17810
This theorem is referenced by:  pslem  17816  cnvps  17822  psss  17824  cnvtsr  17832  tsrdir  17848
  Copyright terms: Public domain W3C validator