| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pstr2 | Structured version Visualization version GIF version | ||
| Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| pstr2 | ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isps 18582 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
| 3 | 2 | simp2d 1143 | 1 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 ∪ cuni 4887 I cid 5557 ◡ccnv 5664 ↾ cres 5667 ∘ ccom 5669 Rel wrel 5670 PosetRelcps 18578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 df-ss 3948 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-res 5677 df-ps 18580 |
| This theorem is referenced by: pslem 18586 cnvps 18592 psss 18594 tsrdir 18618 |
| Copyright terms: Public domain | W3C validator |