MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pstr2 Structured version   Visualization version   GIF version

Theorem pstr2 18474
Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
pstr2 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)

Proof of Theorem pstr2
StepHypRef Expression
1 isps 18471 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
21ibi 267 . 2 (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅)))
32simp2d 1143 1 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902   cuni 4859   I cid 5510  ccnv 5615  cres 5618  ccom 5620  Rel wrel 5621  PosetRelcps 18467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-res 5628  df-ps 18469
This theorem is referenced by:  pslem  18475  cnvps  18481  psss  18483  tsrdir  18507
  Copyright terms: Public domain W3C validator