| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pstr2 | Structured version Visualization version GIF version | ||
| Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
| Ref | Expression |
|---|---|
| pstr2 | ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isps 18527 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
| 3 | 2 | simp2d 1143 | 1 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ∪ cuni 4871 I cid 5532 ◡ccnv 5637 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 PosetRelcps 18523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-res 5650 df-ps 18525 |
| This theorem is referenced by: pslem 18531 cnvps 18537 psss 18539 tsrdir 18563 |
| Copyright terms: Public domain | W3C validator |