MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pstr2 Structured version   Visualization version   GIF version

Theorem pstr2 18289
Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
pstr2 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)

Proof of Theorem pstr2
StepHypRef Expression
1 isps 18286 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
21ibi 266 . 2 (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅)))
32simp2d 1142 1 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887   cuni 4839   I cid 5488  ccnv 5588  cres 5591  ccom 5593  Rel wrel 5594  PosetRelcps 18282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-res 5601  df-ps 18284
This theorem is referenced by:  pslem  18290  cnvps  18296  psss  18298  tsrdir  18322
  Copyright terms: Public domain W3C validator