MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pstr2 Structured version   Visualization version   GIF version

Theorem pstr2 18536
Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
pstr2 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)

Proof of Theorem pstr2
StepHypRef Expression
1 isps 18533 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
21ibi 267 . 2 (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅)))
32simp2d 1143 1 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3915  wss 3916   cuni 4873   I cid 5534  ccnv 5639  cres 5642  ccom 5644  Rel wrel 5645  PosetRelcps 18529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3923  df-ss 3933  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-res 5652  df-ps 18531
This theorem is referenced by:  pslem  18537  cnvps  18543  psss  18545  tsrdir  18569
  Copyright terms: Public domain W3C validator