MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pstr2 Structured version   Visualization version   GIF version

Theorem pstr2 17663
Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
pstr2 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)

Proof of Theorem pstr2
StepHypRef Expression
1 isps 17660 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅))))
21ibi 259 . 2 (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅𝑅) ⊆ 𝑅 ∧ (𝑅𝑅) = ( I ↾ 𝑅)))
32simp2d 1123 1 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wcel 2048  cin 3824  wss 3825   cuni 4706   I cid 5304  ccnv 5399  cres 5402  ccom 5404  Rel wrel 5405  PosetRelcps 17656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-ext 2745
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-rex 3088  df-v 3411  df-in 3832  df-ss 3839  df-uni 4707  df-br 4924  df-opab 4986  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-res 5412  df-ps 17658
This theorem is referenced by:  pslem  17664  cnvps  17670  psss  17672  tsrdir  17696
  Copyright terms: Public domain W3C validator