![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pstr2 | Structured version Visualization version GIF version |
Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
pstr2 | ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps 17660 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | |
2 | 1 | ibi 259 | . 2 ⊢ (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
3 | 2 | simp2d 1123 | 1 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∩ cin 3824 ⊆ wss 3825 ∪ cuni 4706 I cid 5304 ◡ccnv 5399 ↾ cres 5402 ∘ ccom 5404 Rel wrel 5405 PosetRelcps 17656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rex 3088 df-v 3411 df-in 3832 df-ss 3839 df-uni 4707 df-br 4924 df-opab 4986 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-res 5412 df-ps 17658 |
This theorem is referenced by: pslem 17664 cnvps 17670 psss 17672 tsrdir 17696 |
Copyright terms: Public domain | W3C validator |