![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pstr2 | Structured version Visualization version GIF version |
Description: A poset is transitive. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
pstr2 | ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps 18635 | . . 3 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∈ PosetRel ↔ (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅)))) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝑅 ∈ PosetRel → (Rel 𝑅 ∧ (𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (𝑅 ∩ ◡𝑅) = ( I ↾ ∪ ∪ 𝑅))) |
3 | 2 | simp2d 1144 | 1 ⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∩ cin 3965 ⊆ wss 3966 ∪ cuni 4915 I cid 5586 ◡ccnv 5692 ↾ cres 5695 ∘ ccom 5697 Rel wrel 5698 PosetRelcps 18631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-in 3973 df-ss 3983 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-res 5705 df-ps 18633 |
This theorem is referenced by: pslem 18639 cnvps 18645 psss 18647 tsrdir 18671 |
Copyright terms: Public domain | W3C validator |