MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrdir Structured version   Visualization version   GIF version

Theorem tsrdir 17850
Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
tsrdir (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)

Proof of Theorem tsrdir
StepHypRef Expression
1 tsrps 17833 . . . 4 (𝐴 ∈ TosetRel → 𝐴 ∈ PosetRel)
2 psrel 17815 . . . 4 (𝐴 ∈ PosetRel → Rel 𝐴)
31, 2syl 17 . . 3 (𝐴 ∈ TosetRel → Rel 𝐴)
4 psref2 17816 . . . . 5 (𝐴 ∈ PosetRel → (𝐴𝐴) = ( I ↾ 𝐴))
5 inss1 4207 . . . . 5 (𝐴𝐴) ⊆ 𝐴
64, 5eqsstrrdi 4024 . . . 4 (𝐴 ∈ PosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
71, 6syl 17 . . 3 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
83, 7jca 514 . 2 (𝐴 ∈ TosetRel → (Rel 𝐴 ∧ ( I ↾ 𝐴) ⊆ 𝐴))
9 pstr2 17817 . . . 4 (𝐴 ∈ PosetRel → (𝐴𝐴) ⊆ 𝐴)
101, 9syl 17 . . 3 (𝐴 ∈ TosetRel → (𝐴𝐴) ⊆ 𝐴)
11 psdmrn 17819 . . . . . . 7 (𝐴 ∈ PosetRel → (dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴))
121, 11syl 17 . . . . . 6 (𝐴 ∈ TosetRel → (dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴))
1312simpld 497 . . . . 5 (𝐴 ∈ TosetRel → dom 𝐴 = 𝐴)
1413sqxpeqd 5589 . . . 4 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) = ( 𝐴 × 𝐴))
15 eqid 2823 . . . . . . 7 dom 𝐴 = dom 𝐴
1615istsr 17829 . . . . . 6 (𝐴 ∈ TosetRel ↔ (𝐴 ∈ PosetRel ∧ (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴)))
1716simprbi 499 . . . . 5 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴))
18 relcoi2 6130 . . . . . . . 8 (Rel 𝐴 → (( I ↾ 𝐴) ∘ 𝐴) = 𝐴)
193, 18syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (( I ↾ 𝐴) ∘ 𝐴) = 𝐴)
20 cnvresid 6435 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
21 cnvss 5745 . . . . . . . . . 10 (( I ↾ 𝐴) ⊆ 𝐴( I ↾ 𝐴) ⊆ 𝐴)
227, 21syl 17 . . . . . . . . 9 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
2320, 22eqsstrrid 4018 . . . . . . . 8 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
24 coss1 5728 . . . . . . . 8 (( I ↾ 𝐴) ⊆ 𝐴 → (( I ↾ 𝐴) ∘ 𝐴) ⊆ (𝐴𝐴))
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (( I ↾ 𝐴) ∘ 𝐴) ⊆ (𝐴𝐴))
2619, 25eqsstrrd 4008 . . . . . 6 (𝐴 ∈ TosetRel → 𝐴 ⊆ (𝐴𝐴))
27 relcnv 5969 . . . . . . . 8 Rel 𝐴
28 relcoi1 6131 . . . . . . . 8 (Rel 𝐴 → (𝐴 ∘ ( I ↾ 𝐴)) = 𝐴)
2927, 28ax-mp 5 . . . . . . 7 (𝐴 ∘ ( I ↾ 𝐴)) = 𝐴
30 relcnvfld 6133 . . . . . . . . . . 11 (Rel 𝐴 𝐴 = 𝐴)
313, 30syl 17 . . . . . . . . . 10 (𝐴 ∈ TosetRel → 𝐴 = 𝐴)
3231reseq2d 5855 . . . . . . . . 9 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) = ( I ↾ 𝐴))
3332, 7eqsstrrd 4008 . . . . . . . 8 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
34 coss2 5729 . . . . . . . 8 (( I ↾ 𝐴) ⊆ 𝐴 → (𝐴 ∘ ( I ↾ 𝐴)) ⊆ (𝐴𝐴))
3533, 34syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (𝐴 ∘ ( I ↾ 𝐴)) ⊆ (𝐴𝐴))
3629, 35eqsstrrid 4018 . . . . . 6 (𝐴 ∈ TosetRel → 𝐴 ⊆ (𝐴𝐴))
3726, 36unssd 4164 . . . . 5 (𝐴 ∈ TosetRel → (𝐴𝐴) ⊆ (𝐴𝐴))
3817, 37sstrd 3979 . . . 4 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴))
3914, 38eqsstrrd 4008 . . 3 (𝐴 ∈ TosetRel → ( 𝐴 × 𝐴) ⊆ (𝐴𝐴))
4010, 39jca 514 . 2 (𝐴 ∈ TosetRel → ((𝐴𝐴) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴) ⊆ (𝐴𝐴)))
41 eqid 2823 . . 3 𝐴 = 𝐴
4241isdir 17844 . 2 (𝐴 ∈ TosetRel → (𝐴 ∈ DirRel ↔ ((Rel 𝐴 ∧ ( I ↾ 𝐴) ⊆ 𝐴) ∧ ((𝐴𝐴) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴) ⊆ (𝐴𝐴)))))
438, 40, 42mpbir2and 711 1 (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cun 3936  cin 3937  wss 3938   cuni 4840   I cid 5461   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  ccom 5561  Rel wrel 5562  PosetRelcps 17810   TosetRel ctsr 17811  DirRelcdir 17840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-fun 6359  df-ps 17812  df-tsr 17813  df-dir 17842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator