MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrdir Structured version   Visualization version   GIF version

Theorem tsrdir 18510
Description: A totally ordered set is a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
tsrdir (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)

Proof of Theorem tsrdir
StepHypRef Expression
1 tsrps 18493 . . . 4 (𝐴 ∈ TosetRel → 𝐴 ∈ PosetRel)
2 psrel 18475 . . . 4 (𝐴 ∈ PosetRel → Rel 𝐴)
31, 2syl 17 . . 3 (𝐴 ∈ TosetRel → Rel 𝐴)
4 psref2 18476 . . . . 5 (𝐴 ∈ PosetRel → (𝐴𝐴) = ( I ↾ 𝐴))
5 inss1 4187 . . . . 5 (𝐴𝐴) ⊆ 𝐴
64, 5eqsstrrdi 3980 . . . 4 (𝐴 ∈ PosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
71, 6syl 17 . . 3 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
83, 7jca 511 . 2 (𝐴 ∈ TosetRel → (Rel 𝐴 ∧ ( I ↾ 𝐴) ⊆ 𝐴))
9 pstr2 18477 . . . 4 (𝐴 ∈ PosetRel → (𝐴𝐴) ⊆ 𝐴)
101, 9syl 17 . . 3 (𝐴 ∈ TosetRel → (𝐴𝐴) ⊆ 𝐴)
11 psdmrn 18479 . . . . . . 7 (𝐴 ∈ PosetRel → (dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴))
121, 11syl 17 . . . . . 6 (𝐴 ∈ TosetRel → (dom 𝐴 = 𝐴 ∧ ran 𝐴 = 𝐴))
1312simpld 494 . . . . 5 (𝐴 ∈ TosetRel → dom 𝐴 = 𝐴)
1413sqxpeqd 5648 . . . 4 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) = ( 𝐴 × 𝐴))
15 eqid 2731 . . . . . . 7 dom 𝐴 = dom 𝐴
1615istsr 18489 . . . . . 6 (𝐴 ∈ TosetRel ↔ (𝐴 ∈ PosetRel ∧ (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴)))
1716simprbi 496 . . . . 5 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴))
18 relcoi2 6224 . . . . . . . 8 (Rel 𝐴 → (( I ↾ 𝐴) ∘ 𝐴) = 𝐴)
193, 18syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (( I ↾ 𝐴) ∘ 𝐴) = 𝐴)
20 cnvresid 6560 . . . . . . . . 9 ( I ↾ 𝐴) = ( I ↾ 𝐴)
21 cnvss 5812 . . . . . . . . . 10 (( I ↾ 𝐴) ⊆ 𝐴( I ↾ 𝐴) ⊆ 𝐴)
227, 21syl 17 . . . . . . . . 9 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
2320, 22eqsstrrid 3974 . . . . . . . 8 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
24 coss1 5795 . . . . . . . 8 (( I ↾ 𝐴) ⊆ 𝐴 → (( I ↾ 𝐴) ∘ 𝐴) ⊆ (𝐴𝐴))
2523, 24syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (( I ↾ 𝐴) ∘ 𝐴) ⊆ (𝐴𝐴))
2619, 25eqsstrrd 3970 . . . . . 6 (𝐴 ∈ TosetRel → 𝐴 ⊆ (𝐴𝐴))
27 relcnv 6053 . . . . . . . 8 Rel 𝐴
28 relcoi1 6225 . . . . . . . 8 (Rel 𝐴 → (𝐴 ∘ ( I ↾ 𝐴)) = 𝐴)
2927, 28ax-mp 5 . . . . . . 7 (𝐴 ∘ ( I ↾ 𝐴)) = 𝐴
30 relcnvfld 6227 . . . . . . . . . . 11 (Rel 𝐴 𝐴 = 𝐴)
313, 30syl 17 . . . . . . . . . 10 (𝐴 ∈ TosetRel → 𝐴 = 𝐴)
3231reseq2d 5928 . . . . . . . . 9 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) = ( I ↾ 𝐴))
3332, 7eqsstrrd 3970 . . . . . . . 8 (𝐴 ∈ TosetRel → ( I ↾ 𝐴) ⊆ 𝐴)
34 coss2 5796 . . . . . . . 8 (( I ↾ 𝐴) ⊆ 𝐴 → (𝐴 ∘ ( I ↾ 𝐴)) ⊆ (𝐴𝐴))
3533, 34syl 17 . . . . . . 7 (𝐴 ∈ TosetRel → (𝐴 ∘ ( I ↾ 𝐴)) ⊆ (𝐴𝐴))
3629, 35eqsstrrid 3974 . . . . . 6 (𝐴 ∈ TosetRel → 𝐴 ⊆ (𝐴𝐴))
3726, 36unssd 4142 . . . . 5 (𝐴 ∈ TosetRel → (𝐴𝐴) ⊆ (𝐴𝐴))
3817, 37sstrd 3945 . . . 4 (𝐴 ∈ TosetRel → (dom 𝐴 × dom 𝐴) ⊆ (𝐴𝐴))
3914, 38eqsstrrd 3970 . . 3 (𝐴 ∈ TosetRel → ( 𝐴 × 𝐴) ⊆ (𝐴𝐴))
4010, 39jca 511 . 2 (𝐴 ∈ TosetRel → ((𝐴𝐴) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴) ⊆ (𝐴𝐴)))
41 eqid 2731 . . 3 𝐴 = 𝐴
4241isdir 18504 . 2 (𝐴 ∈ TosetRel → (𝐴 ∈ DirRel ↔ ((Rel 𝐴 ∧ ( I ↾ 𝐴) ⊆ 𝐴) ∧ ((𝐴𝐴) ⊆ 𝐴 ∧ ( 𝐴 × 𝐴) ⊆ (𝐴𝐴)))))
438, 40, 42mpbir2and 713 1 (𝐴 ∈ TosetRel → 𝐴 ∈ DirRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3900  cin 3901  wss 3902   cuni 4859   I cid 5510   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cres 5618  ccom 5620  Rel wrel 5621  PosetRelcps 18470   TosetRel ctsr 18471  DirRelcdir 18500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-ps 18472  df-tsr 18473  df-dir 18502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator