Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxpow Structured version   Visualization version   GIF version

Theorem wfaxpow 44987
Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxpow 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊

Proof of Theorem wfaxpow
StepHypRef Expression
1 trwf 44951 . . . 4 Tr (𝑅1 “ On)
2 wfax.1 . . . . 5 𝑊 = (𝑅1 “ On)
3 treq 5265 . . . . 5 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . . 4 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . . 3 Tr 𝑊
6 pwclaxpow 44974 . . 3 ((Tr 𝑊 ∧ ∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊) → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
75, 6mpan 690 . 2 (∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊 → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
8 pwwf 9843 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
98biimpi 216 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
10 r1elssi 9841 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
11 dfss2 3968 . . . . . 6 (𝒫 𝑥 (𝑅1 “ On) ↔ (𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥)
12 eleq1 2828 . . . . . 6 ((𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
1311, 12sylbi 217 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
149, 10, 133syl 18 . . . 4 (𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
159, 14mpbird 257 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
162eleq2i 2832 . . 3 (𝑥𝑊𝑥 (𝑅1 “ On))
172ineq2i 4216 . . . 4 (𝒫 𝑥𝑊) = (𝒫 𝑥 (𝑅1 “ On))
1817, 2eleq12i 2833 . . 3 ((𝒫 𝑥𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
1915, 16, 183imtr4i 292 . 2 (𝑥𝑊 → (𝒫 𝑥𝑊) ∈ 𝑊)
207, 19mprg 3066 1 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3060  wrex 3069  cin 3949  wss 3950  𝒫 cpw 4598   cuni 4905  Tr wtr 5257  cima 5686  Oncon0 6382  𝑅1cr1 9798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-ov 7432  df-om 7884  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-r1 9800  df-rank 9801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator