| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxpow | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxpow | ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trwf 44918 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 2 | wfax.1 | . . . . 5 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 3 | treq 5235 | . . . . 5 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpbir 231 | . . 3 ⊢ Tr 𝑊 |
| 6 | pwclaxpow 44943 | . . 3 ⊢ ((Tr 𝑊 ∧ ∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 8 | pwwf 9814 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 9 | 8 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 10 | r1elssi 9812 | . . . . 5 ⊢ (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 11 | dfss2 3942 | . . . . . 6 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥) | |
| 12 | eleq1 2821 | . . . . . 6 ⊢ ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) | |
| 13 | 11, 12 | sylbi 217 | . . . . 5 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 14 | 9, 10, 13 | 3syl 18 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 15 | 9, 14 | mpbird 257 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 16 | 2 | eleq2i 2825 | . . 3 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 17 | 2 | ineq2i 4190 | . . . 4 ⊢ (𝒫 𝑥 ∩ 𝑊) = (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) |
| 18 | 17, 2 | eleq12i 2826 | . . 3 ⊢ ((𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 19 | 15, 16, 18 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝑊 → (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) |
| 20 | 7, 19 | mprg 3056 | 1 ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3923 ⊆ wss 3924 𝒫 cpw 4573 ∪ cuni 4881 Tr wtr 5227 “ cima 5655 Oncon0 6350 𝑅1cr1 9769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-r1 9771 df-rank 9772 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |