Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxpow Structured version   Visualization version   GIF version

Theorem wfaxpow 44981
Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxpow 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊

Proof of Theorem wfaxpow
StepHypRef Expression
1 trwf 44943 . . . 4 Tr (𝑅1 “ On)
2 wfax.1 . . . . 5 𝑊 = (𝑅1 “ On)
3 treq 5206 . . . . 5 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . . 4 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . . 3 Tr 𝑊
6 pwclaxpow 44968 . . 3 ((Tr 𝑊 ∧ ∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊) → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
75, 6mpan 690 . 2 (∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊 → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
8 pwwf 9703 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
98biimpi 216 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
10 r1elssi 9701 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
11 dfss2 3921 . . . . . 6 (𝒫 𝑥 (𝑅1 “ On) ↔ (𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥)
12 eleq1 2816 . . . . . 6 ((𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
1311, 12sylbi 217 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
149, 10, 133syl 18 . . . 4 (𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
159, 14mpbird 257 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
162eleq2i 2820 . . 3 (𝑥𝑊𝑥 (𝑅1 “ On))
172ineq2i 4168 . . . 4 (𝒫 𝑥𝑊) = (𝒫 𝑥 (𝑅1 “ On))
1817, 2eleq12i 2821 . . 3 ((𝒫 𝑥𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
1915, 16, 183imtr4i 292 . 2 (𝑥𝑊 → (𝒫 𝑥𝑊) ∈ 𝑊)
207, 19mprg 3050 1 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3902  wss 3903  𝒫 cpw 4551   cuni 4858  Tr wtr 5199  cima 5622  Oncon0 6307  𝑅1cr1 9658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator