| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxpow | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxpow | ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trwf 44943 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 2 | wfax.1 | . . . . 5 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 3 | treq 5206 | . . . . 5 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpbir 231 | . . 3 ⊢ Tr 𝑊 |
| 6 | pwclaxpow 44968 | . . 3 ⊢ ((Tr 𝑊 ∧ ∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 8 | pwwf 9703 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 9 | 8 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 10 | r1elssi 9701 | . . . . 5 ⊢ (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 11 | dfss2 3921 | . . . . . 6 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥) | |
| 12 | eleq1 2816 | . . . . . 6 ⊢ ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) | |
| 13 | 11, 12 | sylbi 217 | . . . . 5 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 14 | 9, 10, 13 | 3syl 18 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 15 | 9, 14 | mpbird 257 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 16 | 2 | eleq2i 2820 | . . 3 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 17 | 2 | ineq2i 4168 | . . . 4 ⊢ (𝒫 𝑥 ∩ 𝑊) = (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) |
| 18 | 17, 2 | eleq12i 2821 | . . 3 ⊢ ((𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 19 | 15, 16, 18 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝑊 → (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) |
| 20 | 7, 19 | mprg 3050 | 1 ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3902 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 Tr wtr 5199 “ cima 5622 Oncon0 6307 𝑅1cr1 9658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 df-rank 9661 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |