Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxpow Structured version   Visualization version   GIF version

Theorem wfaxpow 45100
Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxpow 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊

Proof of Theorem wfaxpow
StepHypRef Expression
1 trwf 45062 . . . 4 Tr (𝑅1 “ On)
2 wfax.1 . . . . 5 𝑊 = (𝑅1 “ On)
3 treq 5203 . . . . 5 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . . 4 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . . 3 Tr 𝑊
6 pwclaxpow 45087 . . 3 ((Tr 𝑊 ∧ ∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊) → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
75, 6mpan 690 . 2 (∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊 → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
8 pwwf 9700 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
98biimpi 216 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
10 r1elssi 9698 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
11 dfss2 3915 . . . . . 6 (𝒫 𝑥 (𝑅1 “ On) ↔ (𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥)
12 eleq1 2819 . . . . . 6 ((𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
1311, 12sylbi 217 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
149, 10, 133syl 18 . . . 4 (𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
159, 14mpbird 257 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
162eleq2i 2823 . . 3 (𝑥𝑊𝑥 (𝑅1 “ On))
172ineq2i 4164 . . . 4 (𝒫 𝑥𝑊) = (𝒫 𝑥 (𝑅1 “ On))
1817, 2eleq12i 2824 . . 3 ((𝒫 𝑥𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
1915, 16, 183imtr4i 292 . 2 (𝑥𝑊 → (𝒫 𝑥𝑊) ∈ 𝑊)
207, 19mprg 3053 1 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856  Tr wtr 5196  cima 5617  Oncon0 6306  𝑅1cr1 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9657  df-rank 9658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator