| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxpow | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxpow | ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trwf 44951 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 2 | wfax.1 | . . . . 5 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 3 | treq 5265 | . . . . 5 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpbir 231 | . . 3 ⊢ Tr 𝑊 |
| 6 | pwclaxpow 44974 | . . 3 ⊢ ((Tr 𝑊 ∧ ∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 8 | pwwf 9843 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 9 | 8 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 10 | r1elssi 9841 | . . . . 5 ⊢ (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 11 | dfss2 3968 | . . . . . 6 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥) | |
| 12 | eleq1 2828 | . . . . . 6 ⊢ ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) | |
| 13 | 11, 12 | sylbi 217 | . . . . 5 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 14 | 9, 10, 13 | 3syl 18 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 15 | 9, 14 | mpbird 257 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 16 | 2 | eleq2i 2832 | . . 3 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 17 | 2 | ineq2i 4216 | . . . 4 ⊢ (𝒫 𝑥 ∩ 𝑊) = (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) |
| 18 | 17, 2 | eleq12i 2833 | . . 3 ⊢ ((𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 19 | 15, 16, 18 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝑊 → (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) |
| 20 | 7, 19 | mprg 3066 | 1 ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3060 ∃wrex 3069 ∩ cin 3949 ⊆ wss 3950 𝒫 cpw 4598 ∪ cuni 4905 Tr wtr 5257 “ cima 5686 Oncon0 6382 𝑅1cr1 9798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-om 7884 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-r1 9800 df-rank 9801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |