Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxpow Structured version   Visualization version   GIF version

Theorem wfaxpow 44980
Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxpow 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊

Proof of Theorem wfaxpow
StepHypRef Expression
1 trwf 44942 . . . 4 Tr (𝑅1 “ On)
2 wfax.1 . . . . 5 𝑊 = (𝑅1 “ On)
3 treq 5224 . . . . 5 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . . 4 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . . 3 Tr 𝑊
6 pwclaxpow 44967 . . 3 ((Tr 𝑊 ∧ ∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊) → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
75, 6mpan 690 . 2 (∀𝑥𝑊 (𝒫 𝑥𝑊) ∈ 𝑊 → ∀𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦))
8 pwwf 9766 . . . . 5 (𝑥 (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On))
98biimpi 216 . . . 4 (𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
10 r1elssi 9764 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → 𝒫 𝑥 (𝑅1 “ On))
11 dfss2 3934 . . . . . 6 (𝒫 𝑥 (𝑅1 “ On) ↔ (𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥)
12 eleq1 2817 . . . . . 6 ((𝒫 𝑥 (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
1311, 12sylbi 217 . . . . 5 (𝒫 𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
149, 10, 133syl 18 . . . 4 (𝑥 (𝑅1 “ On) → ((𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On) ↔ 𝒫 𝑥 (𝑅1 “ On)))
159, 14mpbird 257 . . 3 (𝑥 (𝑅1 “ On) → (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
162eleq2i 2821 . . 3 (𝑥𝑊𝑥 (𝑅1 “ On))
172ineq2i 4182 . . . 4 (𝒫 𝑥𝑊) = (𝒫 𝑥 (𝑅1 “ On))
1817, 2eleq12i 2822 . . 3 ((𝒫 𝑥𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 (𝑅1 “ On)) ∈ (𝑅1 “ On))
1915, 16, 183imtr4i 292 . 2 (𝑥𝑊 → (𝒫 𝑥𝑊) ∈ 𝑊)
207, 19mprg 3051 1 𝑥𝑊𝑦𝑊𝑧𝑊 (∀𝑤𝑊 (𝑤𝑧𝑤𝑥) → 𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3915  wss 3916  𝒫 cpw 4565   cuni 4873  Tr wtr 5216  cima 5643  Oncon0 6334  𝑅1cr1 9721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-r1 9723  df-rank 9724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator