| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxpow | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of [Kunen2] p. 113. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxpow | ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trwf 45062 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 2 | wfax.1 | . . . . 5 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 3 | treq 5203 | . . . . 5 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpbir 231 | . . 3 ⊢ Tr 𝑊 |
| 6 | pwclaxpow 45087 | . . 3 ⊢ ((Tr 𝑊 ∧ ∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | |
| 7 | 5, 6 | mpan 690 | . 2 ⊢ (∀𝑥 ∈ 𝑊 (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 → ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 8 | pwwf 9700 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) | |
| 9 | 8 | biimpi 216 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 10 | r1elssi 9698 | . . . . 5 ⊢ (𝒫 𝑥 ∈ ∪ (𝑅1 “ On) → 𝒫 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 11 | dfss2 3915 | . . . . . 6 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥) | |
| 12 | eleq1 2819 | . . . . . 6 ⊢ ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) = 𝒫 𝑥 → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) | |
| 13 | 11, 12 | sylbi 217 | . . . . 5 ⊢ (𝒫 𝑥 ⊆ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 14 | 9, 10, 13 | 3syl 18 | . . . 4 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → ((𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝑥 ∈ ∪ (𝑅1 “ On))) |
| 15 | 9, 14 | mpbird 257 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 16 | 2 | eleq2i 2823 | . . 3 ⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪ (𝑅1 “ On)) |
| 17 | 2 | ineq2i 4164 | . . . 4 ⊢ (𝒫 𝑥 ∩ 𝑊) = (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) |
| 18 | 17, 2 | eleq12i 2824 | . . 3 ⊢ ((𝒫 𝑥 ∩ 𝑊) ∈ 𝑊 ↔ (𝒫 𝑥 ∩ ∪ (𝑅1 “ On)) ∈ ∪ (𝑅1 “ On)) |
| 19 | 15, 16, 18 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ 𝑊 → (𝒫 𝑥 ∩ 𝑊) ∈ 𝑊) |
| 20 | 7, 19 | mprg 3053 | 1 ⊢ ∀𝑥 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 Tr wtr 5196 “ cima 5617 Oncon0 6306 𝑅1cr1 9655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |