Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimag Structured version   Visualization version   GIF version

Theorem intimag 43077
Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimag (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
Distinct variable groups:   𝑥,𝑎,𝑦,𝐴   𝐵,𝑎,𝑥,𝑦   𝐴,𝑏   𝐵,𝑏,𝑎,𝑦,𝑥

Proof of Theorem intimag
StepHypRef Expression
1 r19.12 3307 . . . . 5 (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 → ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
2 id 22 . . . . 5 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
31, 2impbid2 225 . . . 4 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
4 elimaint 43070 . . . 4 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
5 elintima 43074 . . . 4 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
63, 4, 53bitr4g 314 . . 3 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
76alimi 1806 . 2 (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ∀𝑦(𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
8 dfcleq 2721 . 2 (( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑦(𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
97, 8sylibr 233 1 (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wcel 2099  {cab 2705  wral 3057  wrex 3066  cop 4631   cint 4945  cima 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-br 5144  df-opab 5206  df-xp 5679  df-cnv 5681  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686
This theorem is referenced by:  intimasn  43078
  Copyright terms: Public domain W3C validator