Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimag Structured version   Visualization version   GIF version

Theorem intimag 43688
Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimag (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
Distinct variable groups:   𝑥,𝑎,𝑦,𝐴   𝐵,𝑎,𝑥,𝑦   𝐴,𝑏   𝐵,𝑏,𝑎,𝑦,𝑥

Proof of Theorem intimag
StepHypRef Expression
1 r19.12 3281 . . . . 5 (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 → ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
2 id 22 . . . . 5 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
31, 2impbid2 226 . . . 4 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎))
4 elimaint 43681 . . . 4 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
5 elintima 43685 . . . 4 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
63, 4, 53bitr4g 314 . . 3 ((∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → (𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
76alimi 1812 . 2 (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ∀𝑦(𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
8 dfcleq 2724 . 2 (( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑦(𝑦 ∈ ( 𝐴𝐵) ↔ 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}))
97, 8sylibr 234 1 (∀𝑦(∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴𝐵) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  cop 4582   cint 4897  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  intimasn  43689
  Copyright terms: Public domain W3C validator