Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngmgmbs4 Structured version   Visualization version   GIF version

Theorem rngmgmbs4 35203
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
rngmgmbs4 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋)
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem rngmgmbs4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.12 3324 . . . . 5 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
2 simpl 485 . . . . . . . . 9 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
32eqcomd 2827 . . . . . . . 8 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥))
4 oveq2 7158 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥))
54rspceeqv 3637 . . . . . . . . 9 ((𝑥𝑋𝑥 = (𝑢𝐺𝑥)) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
65ex 415 . . . . . . . 8 (𝑥𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
73, 6syl5 34 . . . . . . 7 (𝑥𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
87reximdv 3273 . . . . . 6 (𝑥𝑋 → (∃𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
98ralimia 3158 . . . . 5 (∀𝑥𝑋𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
101, 9syl 17 . . . 4 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
1110anim2i 618 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
12 foov 7316 . . 3 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
1311, 12sylibr 236 . 2 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
14 forn 6587 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 → ran 𝐺 = 𝑋)
1513, 14syl 17 1 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139   × cxp 5547  ran crn 5550  wf 6345  ontowfo 6347  (class class class)co 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-ov 7153
This theorem is referenced by:  rngorn1eq  35206
  Copyright terms: Public domain W3C validator