![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngmgmbs4 | Structured version Visualization version GIF version |
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngmgmbs4 | ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3296 | . . . . 5 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | |
2 | simpl 484 | . . . . . . . . 9 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥) | |
3 | 2 | eqcomd 2739 | . . . . . . . 8 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥)) |
4 | oveq2 7369 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥)) | |
5 | 4 | rspceeqv 3599 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 = (𝑢𝐺𝑥)) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
6 | 5 | ex 414 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
7 | 3, 6 | syl5 34 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
8 | 7 | reximdv 3164 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → (∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
9 | 8 | ralimia 3080 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
11 | 10 | anim2i 618 | . . 3 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
12 | foov 7532 | . . 3 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | forn 6763 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → ran 𝐺 = 𝑋) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 × cxp 5635 ran crn 5638 ⟶wf 6496 –onto→wfo 6498 (class class class)co 7361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fo 6506 df-fv 6508 df-ov 7364 |
This theorem is referenced by: rngorn1eq 36443 |
Copyright terms: Public domain | W3C validator |