Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngmgmbs4 Structured version   Visualization version   GIF version

Theorem rngmgmbs4 37970
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
rngmgmbs4 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋)
Distinct variable groups:   𝑢,𝐺,𝑥   𝑢,𝑋,𝑥

Proof of Theorem rngmgmbs4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.12 3281 . . . . 5 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
2 simpl 482 . . . . . . . . 9 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥)
32eqcomd 2737 . . . . . . . 8 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥))
4 oveq2 7354 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥))
54rspceeqv 3595 . . . . . . . . 9 ((𝑥𝑋𝑥 = (𝑢𝐺𝑥)) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
65ex 412 . . . . . . . 8 (𝑥𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
73, 6syl5 34 . . . . . . 7 (𝑥𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
87reximdv 3147 . . . . . 6 (𝑥𝑋 → (∃𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
98ralimia 3066 . . . . 5 (∀𝑥𝑋𝑢𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
101, 9syl 17 . . . 4 (∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦))
1110anim2i 617 . . 3 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
12 foov 7520 . . 3 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑢𝑋𝑦𝑋 𝑥 = (𝑢𝐺𝑦)))
1311, 12sylibr 234 . 2 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
14 forn 6738 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 → ran 𝐺 = 𝑋)
1513, 14syl 17 1 ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056   × cxp 5612  ran crn 5615  wf 6477  ontowfo 6479  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-ov 7349
This theorem is referenced by:  rngorn1eq  37973
  Copyright terms: Public domain W3C validator