Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngmgmbs4 | Structured version Visualization version GIF version |
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngmgmbs4 | ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3257 | . . . . 5 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | |
2 | simpl 483 | . . . . . . . . 9 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥) | |
3 | 2 | eqcomd 2744 | . . . . . . . 8 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥)) |
4 | oveq2 7283 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥)) | |
5 | 4 | rspceeqv 3575 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 = (𝑢𝐺𝑥)) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
6 | 5 | ex 413 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
7 | 3, 6 | syl5 34 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
8 | 7 | reximdv 3202 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → (∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
9 | 8 | ralimia 3085 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
11 | 10 | anim2i 617 | . . 3 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
12 | foov 7446 | . . 3 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | forn 6691 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → ran 𝐺 = 𝑋) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 × cxp 5587 ran crn 5590 ⟶wf 6429 –onto→wfo 6431 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 |
This theorem is referenced by: rngorn1eq 36092 |
Copyright terms: Public domain | W3C validator |