![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngmgmbs4 | Structured version Visualization version GIF version |
Description: The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngmgmbs4 | ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3311 | . . . . 5 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | |
2 | simpl 483 | . . . . . . . . 9 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → (𝑢𝐺𝑥) = 𝑥) | |
3 | 2 | eqcomd 2738 | . . . . . . . 8 ⊢ (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → 𝑥 = (𝑢𝐺𝑥)) |
4 | oveq2 7416 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝑢𝐺𝑦) = (𝑢𝐺𝑥)) | |
5 | 4 | rspceeqv 3633 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 = (𝑢𝐺𝑥)) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
6 | 5 | ex 413 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 → (𝑥 = (𝑢𝐺𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
7 | 3, 6 | syl5 34 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
8 | 7 | reximdv 3170 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → (∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
9 | 8 | ralimia 3080 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦)) |
11 | 10 | anim2i 617 | . . 3 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) |
12 | foov 7580 | . . 3 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ∃𝑦 ∈ 𝑋 𝑥 = (𝑢𝐺𝑦))) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | forn 6808 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 → ran 𝐺 = 𝑋) | |
15 | 13, 14 | syl 17 | 1 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 × cxp 5674 ran crn 5677 ⟶wf 6539 –onto→wfo 6541 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7411 |
This theorem is referenced by: rngorn1eq 36797 |
Copyright terms: Public domain | W3C validator |