MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Structured version   Visualization version   GIF version

Theorem ftc1a 24781
Description: The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1a (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1a
Dummy variables 𝑠 𝑢 𝑤 𝑦 𝑧 𝑟 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . 3 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . 3 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . 3 (𝜑𝐴𝐵)
5 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
8 ftc1a.f . . 3 (𝜑𝐹:𝐷⟶ℂ)
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 24780 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
10 fvexd 6683 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑤𝐷) → (𝐹𝑤) ∈ V)
118feqmptd 6731 . . . . . . . . 9 (𝜑𝐹 = (𝑤𝐷 ↦ (𝐹𝑤)))
1211, 7eqeltrrd 2834 . . . . . . . 8 (𝜑 → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
1312adantr 484 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
14 simpr 488 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1510, 13, 14itgcn 24589 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
16 oveq12 7173 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → (𝑠𝑟) = (𝑧𝑦))
1716fveq2d 6672 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘(𝑠𝑟)) = (abs‘(𝑧𝑦)))
1817breq1d 5037 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑑))
19 fveq2 6668 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
20 fveq2 6668 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
2119, 20oveqan12d 7183 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑧) − (𝐺𝑦)))
2221fveq2d 6672 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑧) − (𝐺𝑦))))
2322breq1d 5037 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
2418, 23imbi12d 348 . . . . . . . . . . . 12 ((𝑠 = 𝑧𝑟 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
2524ancoms 462 . . . . . . . . . . 11 ((𝑟 = 𝑦𝑠 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
26 oveq12 7173 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → (𝑠𝑟) = (𝑦𝑧))
2726fveq2d 6672 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘(𝑠𝑟)) = (abs‘(𝑦𝑧)))
2827breq1d 5037 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
29 fveq2 6668 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑦 → (𝐺𝑠) = (𝐺𝑦))
30 fveq2 6668 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑧 → (𝐺𝑟) = (𝐺𝑧))
3129, 30oveqan12d 7183 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑦) − (𝐺𝑧)))
3231fveq2d 6672 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
3332breq1d 5037 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
3428, 33imbi12d 348 . . . . . . . . . . . 12 ((𝑠 = 𝑦𝑟 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
3534ancoms 462 . . . . . . . . . . 11 ((𝑟 = 𝑧𝑠 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
36 iccssre 12896 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
372, 3, 36syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3837ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → (𝐴[,]𝐵) ⊆ ℝ)
3937ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
40 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐴[,]𝐵))
4139, 40sseldd 3876 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℝ)
4241recnd 10740 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℂ)
43 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
4439, 43sseldd 3876 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
4544recnd 10740 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
4642, 45abssubd 14896 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746breq1d 5037 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
489ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
4948, 40ffvelrnd 6856 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ ℂ)
5048, 43ffvelrnd 6856 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ ℂ)
5149, 50abssubd 14896 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
5251breq1d 5037 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
5347, 52imbi12d 348 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
54 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦𝑧)
552adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴 ∈ ℝ)
563adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
574adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴𝐵)
585adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → (𝐴(,)𝐵) ⊆ 𝐷)
596adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐷 ⊆ ℝ)
607adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹 ∈ 𝐿1)
618adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹:𝐷⟶ℂ)
62 simpr1 1195 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦 ∈ (𝐴[,]𝐵))
63 simpr2 1196 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑧 ∈ (𝐴[,]𝐵))
641, 55, 56, 57, 58, 59, 60, 61, 62, 63ftc1lem1 24779 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) ∧ 𝑦𝑧) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6554, 64mpdan 687 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6665adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6766ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6867fveq2d 6672 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡))
69 fvexd 6683 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ V)
702ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ)
7170rexrd 10762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ*)
72 simprl1 1219 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ (𝐴[,]𝐵))
733ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ)
74 elicc2 12879 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7570, 73, 74syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7672, 75mpbid 235 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
7776simp2d 1144 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴𝑦)
78 iooss1 12849 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝐴𝑦) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
7971, 77, 78syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
8073rexrd 10762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ*)
81 simprl2 1220 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ (𝐴[,]𝐵))
82 elicc2 12879 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8370, 73, 82syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8481, 83mpbid 235 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8584simp3d 1145 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧𝐵)
86 iooss2 12850 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8780, 85, 86syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8879, 87sstrd 3885 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝐵))
895ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝐵) ⊆ 𝐷)
9088, 89sstrd 3885 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ 𝐷)
91 ioombl 24310 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ∈ dom vol
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ∈ dom vol)
93 fvexd 6683 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
948feqmptd 6731 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
9594, 7eqeltrrd 2834 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9695ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9790, 92, 93, 96iblss 24549 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1)
9869, 97itgcl 24528 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡 ∈ ℂ)
9998abscld 14879 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ∈ ℝ)
100 iblmbf 24512 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1 → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
10197, 100syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
102101, 69mbfmptcl 24381 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ ℂ)
103102abscld 14879 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (abs‘(𝐹𝑡)) ∈ ℝ)
10469, 97iblabs 24573 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
105103, 104itgrecl 24542 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 ∈ ℝ)
106 simprl 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
107106ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ+)
108107rpred 12507 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ)
10969, 97itgabs 24579 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ≤ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
110 mblvol 24275 . . . . . . . . . . . . . . . . 17 ((𝑦(,)𝑧) ∈ dom vol → (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧)))
11191, 110ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧))
112 ioossre 12875 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ⊆ ℝ
113 ovolcl 24223 . . . . . . . . . . . . . . . . . 18 ((𝑦(,)𝑧) ⊆ ℝ → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
11584simp1d 1143 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ ℝ)
11676simp1d 1143 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ ℝ)
117115, 116resubcld 11139 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ)
118117rexrd 10762 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ*)
119 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
120119ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ+)
121120rpxrd 12508 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ*)
122 ioossicc 12900 . . . . . . . . . . . . . . . . . . 19 (𝑦(,)𝑧) ⊆ (𝑦[,]𝑧)
123 iccssre 12896 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
124116, 115, 123syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦[,]𝑧) ⊆ ℝ)
125 ovolss 24230 . . . . . . . . . . . . . . . . . . 19 (((𝑦(,)𝑧) ⊆ (𝑦[,]𝑧) ∧ (𝑦[,]𝑧) ⊆ ℝ) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
126122, 124, 125sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
127 simprl3 1221 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦𝑧)
128 ovolicc 24268 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
129116, 115, 127, 128syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
130126, 129breqtrd 5053 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (𝑧𝑦))
131116, 115, 127abssubge0d 14874 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
132 simprr 773 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) < 𝑑)
133131, 132eqbrtrrd 5051 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) < 𝑑)
134114, 118, 121, 130, 133xrlelttrd 12629 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) < 𝑑)
135111, 134eqbrtrid 5062 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol‘(𝑦(,)𝑧)) < 𝑑)
136 sseq1 3900 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → (𝑢𝐷 ↔ (𝑦(,)𝑧) ⊆ 𝐷))
137 fveq2 6668 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → (vol‘𝑢) = (vol‘(𝑦(,)𝑧)))
138137breq1d 5037 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ((vol‘𝑢) < 𝑑 ↔ (vol‘(𝑦(,)𝑧)) < 𝑑))
139136, 138anbi12d 634 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → ((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) ↔ ((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑)))
140 2fveq3 6673 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑡 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑡)))
141140cbvitgv 24521 . . . . . . . . . . . . . . . . . . 19 𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫𝑢(abs‘(𝐹𝑡)) d𝑡
142 itgeq1 24517 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑡)) d𝑡 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
143141, 142syl5eq 2785 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
144143breq1d 5037 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → (∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒 ↔ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
145139, 144imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑦(,)𝑧) → (((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) ↔ (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)))
146 simplr 769 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
147145, 146, 92rspcdva 3526 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
14890, 135, 147mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)
14999, 105, 108, 109, 148lelttrd 10869 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) < 𝑒)
15068, 149eqbrtrd 5049 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)
151150expr 460 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
15225, 35, 38, 53, 151wlogle 11244 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
153152ralrimivva 3103 . . . . . . . . 9 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
154153ex 416 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
155154anassrs 471 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
156155reximdva 3183 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
15715, 156mpd 15 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
158 r19.12 3233 . . . . 5 (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
159157, 158syl 17 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
160159ralrimiva 3096 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
161 ralcom 3257 . . 3 (∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
162160, 161sylib 221 . 2 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
163 ax-resscn 10665 . . . 4 ℝ ⊆ ℂ
16437, 163sstrdi 3887 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
165 ssid 3897 . . 3 ℂ ⊆ ℂ
166 elcncf2 23635 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
167164, 165, 166sylancl 589 . 2 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
1689, 162, 167mpbir2and 713 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  wrex 3054  Vcvv 3397  wss 3841   class class class wbr 5027  cmpt 5107  dom cdm 5519  wf 6329  cfv 6333  (class class class)co 7164  cc 10606  cr 10607  *cxr 10745   < clt 10746  cle 10747  cmin 10941  +crp 12465  (,)cioo 12814  [,]cicc 12817  abscabs 14676  cnccncf 23621  vol*covol 24207  volcvol 24208  MblFncmbf 24359  𝐿1cibl 24362  citg 24363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cc 9928  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-symdif 4131  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-disj 4993  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-ofr 7420  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-omul 8129  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-dju 9396  df-card 9434  df-acn 9437  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ioo 12818  df-ioc 12819  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-rlim 14929  df-sum 15129  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-gsum 16812  df-topgen 16813  df-pt 16814  df-prds 16817  df-xrs 16871  df-qtop 16876  df-imas 16877  df-xps 16879  df-mre 16953  df-mrc 16954  df-acs 16956  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-mulg 18336  df-cntz 18558  df-cmn 19019  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cn 21971  df-cnp 21972  df-cmp 22131  df-tx 22306  df-hmeo 22499  df-xms 23066  df-ms 23067  df-tms 23068  df-cncf 23623  df-ovol 24209  df-vol 24210  df-mbf 24364  df-itg1 24365  df-itg2 24366  df-ibl 24367  df-itg 24368  df-0p 24415
This theorem is referenced by:  ftc2  24788
  Copyright terms: Public domain W3C validator