MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Structured version   Visualization version   GIF version

Theorem ftc1a 25944
Description: The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1a (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1a
Dummy variables 𝑠 𝑢 𝑤 𝑦 𝑧 𝑟 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . 3 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . 3 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . 3 (𝜑𝐴𝐵)
5 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
8 ftc1a.f . . 3 (𝜑𝐹:𝐷⟶ℂ)
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 25943 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
10 fvexd 6873 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑤𝐷) → (𝐹𝑤) ∈ V)
118feqmptd 6929 . . . . . . . . 9 (𝜑𝐹 = (𝑤𝐷 ↦ (𝐹𝑤)))
1211, 7eqeltrrd 2829 . . . . . . . 8 (𝜑 → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
1312adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
14 simpr 484 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1510, 13, 14itgcn 25746 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
16 oveq12 7396 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → (𝑠𝑟) = (𝑧𝑦))
1716fveq2d 6862 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘(𝑠𝑟)) = (abs‘(𝑧𝑦)))
1817breq1d 5117 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑑))
19 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
20 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
2119, 20oveqan12d 7406 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑧) − (𝐺𝑦)))
2221fveq2d 6862 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑧) − (𝐺𝑦))))
2322breq1d 5117 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
2418, 23imbi12d 344 . . . . . . . . . . . 12 ((𝑠 = 𝑧𝑟 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
2524ancoms 458 . . . . . . . . . . 11 ((𝑟 = 𝑦𝑠 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
26 oveq12 7396 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → (𝑠𝑟) = (𝑦𝑧))
2726fveq2d 6862 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘(𝑠𝑟)) = (abs‘(𝑦𝑧)))
2827breq1d 5117 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
29 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑦 → (𝐺𝑠) = (𝐺𝑦))
30 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑧 → (𝐺𝑟) = (𝐺𝑧))
3129, 30oveqan12d 7406 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑦) − (𝐺𝑧)))
3231fveq2d 6862 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
3332breq1d 5117 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
3428, 33imbi12d 344 . . . . . . . . . . . 12 ((𝑠 = 𝑦𝑟 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
3534ancoms 458 . . . . . . . . . . 11 ((𝑟 = 𝑧𝑠 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
36 iccssre 13390 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
372, 3, 36syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3837ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → (𝐴[,]𝐵) ⊆ ℝ)
3937ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
40 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐴[,]𝐵))
4139, 40sseldd 3947 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℝ)
4241recnd 11202 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℂ)
43 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
4439, 43sseldd 3947 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
4544recnd 11202 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
4642, 45abssubd 15422 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746breq1d 5117 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
489ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
4948, 40ffvelcdmd 7057 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ ℂ)
5048, 43ffvelcdmd 7057 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ ℂ)
5149, 50abssubd 15422 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
5251breq1d 5117 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
5347, 52imbi12d 344 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
54 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦𝑧)
552adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴 ∈ ℝ)
563adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴𝐵)
585adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → (𝐴(,)𝐵) ⊆ 𝐷)
596adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐷 ⊆ ℝ)
607adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹 ∈ 𝐿1)
618adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹:𝐷⟶ℂ)
62 simpr1 1195 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦 ∈ (𝐴[,]𝐵))
63 simpr2 1196 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑧 ∈ (𝐴[,]𝐵))
641, 55, 56, 57, 58, 59, 60, 61, 62, 63ftc1lem1 25942 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) ∧ 𝑦𝑧) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6554, 64mpdan 687 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6665adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6766ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6867fveq2d 6862 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡))
69 fvexd 6873 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ V)
702ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ)
7170rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ*)
72 simprl1 1219 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ (𝐴[,]𝐵))
733ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ)
74 elicc2 13372 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7570, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7672, 75mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
7776simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴𝑦)
78 iooss1 13341 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝐴𝑦) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
7971, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
8073rexrd 11224 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ*)
81 simprl2 1220 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ (𝐴[,]𝐵))
82 elicc2 13372 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8370, 73, 82syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8481, 83mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8584simp3d 1144 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧𝐵)
86 iooss2 13342 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8780, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8879, 87sstrd 3957 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝐵))
895ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝐵) ⊆ 𝐷)
9088, 89sstrd 3957 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ 𝐷)
91 ioombl 25466 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ∈ dom vol
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ∈ dom vol)
93 fvexd 6873 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
948feqmptd 6929 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
9594, 7eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9695ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9790, 92, 93, 96iblss 25706 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1)
9869, 97itgcl 25685 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡 ∈ ℂ)
9998abscld 15405 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ∈ ℝ)
100 iblmbf 25668 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1 → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
10197, 100syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
102101, 69mbfmptcl 25537 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ ℂ)
103102abscld 15405 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (abs‘(𝐹𝑡)) ∈ ℝ)
10469, 97iblabs 25730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
105103, 104itgrecl 25699 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 ∈ ℝ)
106 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
107106ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ+)
108107rpred 12995 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ)
10969, 97itgabs 25736 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ≤ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
110 mblvol 25431 . . . . . . . . . . . . . . . . 17 ((𝑦(,)𝑧) ∈ dom vol → (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧)))
11191, 110ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧))
112 ioossre 13368 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ⊆ ℝ
113 ovolcl 25379 . . . . . . . . . . . . . . . . . 18 ((𝑦(,)𝑧) ⊆ ℝ → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
11584simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ ℝ)
11676simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ ℝ)
117115, 116resubcld 11606 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ)
118117rexrd 11224 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ*)
119 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
120119ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ+)
121120rpxrd 12996 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ*)
122 ioossicc 13394 . . . . . . . . . . . . . . . . . . 19 (𝑦(,)𝑧) ⊆ (𝑦[,]𝑧)
123 iccssre 13390 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
124116, 115, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦[,]𝑧) ⊆ ℝ)
125 ovolss 25386 . . . . . . . . . . . . . . . . . . 19 (((𝑦(,)𝑧) ⊆ (𝑦[,]𝑧) ∧ (𝑦[,]𝑧) ⊆ ℝ) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
126122, 124, 125sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
127 simprl3 1221 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦𝑧)
128 ovolicc 25424 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
129116, 115, 127, 128syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
130126, 129breqtrd 5133 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (𝑧𝑦))
131116, 115, 127abssubge0d 15400 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
132 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) < 𝑑)
133131, 132eqbrtrrd 5131 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) < 𝑑)
134114, 118, 121, 130, 133xrlelttrd 13120 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) < 𝑑)
135111, 134eqbrtrid 5142 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol‘(𝑦(,)𝑧)) < 𝑑)
136 sseq1 3972 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → (𝑢𝐷 ↔ (𝑦(,)𝑧) ⊆ 𝐷))
137 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → (vol‘𝑢) = (vol‘(𝑦(,)𝑧)))
138137breq1d 5117 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ((vol‘𝑢) < 𝑑 ↔ (vol‘(𝑦(,)𝑧)) < 𝑑))
139136, 138anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → ((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) ↔ ((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑)))
140 2fveq3 6863 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑡 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑡)))
141140cbvitgv 25678 . . . . . . . . . . . . . . . . . . 19 𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫𝑢(abs‘(𝐹𝑡)) d𝑡
142 itgeq1 25674 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑡)) d𝑡 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
143141, 142eqtrid 2776 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
144143breq1d 5117 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → (∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒 ↔ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
145139, 144imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑦(,)𝑧) → (((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) ↔ (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)))
146 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
147145, 146, 92rspcdva 3589 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
14890, 135, 147mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)
14999, 105, 108, 109, 148lelttrd 11332 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) < 𝑒)
15068, 149eqbrtrd 5129 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)
151150expr 456 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
15225, 35, 38, 53, 151wlogle 11711 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
153152ralrimivva 3180 . . . . . . . . 9 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
154153ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
155154anassrs 467 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
156155reximdva 3146 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
15715, 156mpd 15 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
158 r19.12 3288 . . . . 5 (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
159157, 158syl 17 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
160159ralrimiva 3125 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
161 ralcom 3265 . . 3 (∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
162160, 161sylib 218 . 2 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
163 ax-resscn 11125 . . . 4 ℝ ⊆ ℂ
16437, 163sstrdi 3959 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
165 ssid 3969 . . 3 ℂ ⊆ ℂ
166 elcncf2 24783 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
167164, 165, 166sylancl 586 . 2 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
1689, 162, 167mpbir2and 713 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  *cxr 11207   < clt 11208  cle 11209  cmin 11405  +crp 12951  (,)cioo 13306  [,]cicc 13309  abscabs 15200  cnccncf 24769  vol*covol 25363  volcvol 25364  MblFncmbf 25515  𝐿1cibl 25518  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571
This theorem is referenced by:  ftc2  25951
  Copyright terms: Public domain W3C validator