MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Structured version   Visualization version   GIF version

Theorem ftc1a 25969
Description: The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1a (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1a
Dummy variables 𝑠 𝑢 𝑤 𝑦 𝑧 𝑟 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . 3 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . 3 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . 3 (𝜑𝐴𝐵)
5 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
8 ftc1a.f . . 3 (𝜑𝐹:𝐷⟶ℂ)
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 25968 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
10 fvexd 6837 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑤𝐷) → (𝐹𝑤) ∈ V)
118feqmptd 6890 . . . . . . . . 9 (𝜑𝐹 = (𝑤𝐷 ↦ (𝐹𝑤)))
1211, 7eqeltrrd 2832 . . . . . . . 8 (𝜑 → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
1312adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
14 simpr 484 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1510, 13, 14itgcn 25771 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
16 oveq12 7355 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → (𝑠𝑟) = (𝑧𝑦))
1716fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘(𝑠𝑟)) = (abs‘(𝑧𝑦)))
1817breq1d 5101 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑑))
19 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
20 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
2119, 20oveqan12d 7365 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑧) − (𝐺𝑦)))
2221fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑧) − (𝐺𝑦))))
2322breq1d 5101 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
2418, 23imbi12d 344 . . . . . . . . . . . 12 ((𝑠 = 𝑧𝑟 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
2524ancoms 458 . . . . . . . . . . 11 ((𝑟 = 𝑦𝑠 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
26 oveq12 7355 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → (𝑠𝑟) = (𝑦𝑧))
2726fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘(𝑠𝑟)) = (abs‘(𝑦𝑧)))
2827breq1d 5101 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
29 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑦 → (𝐺𝑠) = (𝐺𝑦))
30 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑧 → (𝐺𝑟) = (𝐺𝑧))
3129, 30oveqan12d 7365 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑦) − (𝐺𝑧)))
3231fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
3332breq1d 5101 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
3428, 33imbi12d 344 . . . . . . . . . . . 12 ((𝑠 = 𝑦𝑟 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
3534ancoms 458 . . . . . . . . . . 11 ((𝑟 = 𝑧𝑠 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
36 iccssre 13326 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
372, 3, 36syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3837ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → (𝐴[,]𝐵) ⊆ ℝ)
3937ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
40 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐴[,]𝐵))
4139, 40sseldd 3935 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℝ)
4241recnd 11137 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℂ)
43 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
4439, 43sseldd 3935 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
4544recnd 11137 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
4642, 45abssubd 15360 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746breq1d 5101 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
489ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
4948, 40ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ ℂ)
5048, 43ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ ℂ)
5149, 50abssubd 15360 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
5251breq1d 5101 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
5347, 52imbi12d 344 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
54 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦𝑧)
552adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴 ∈ ℝ)
563adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴𝐵)
585adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → (𝐴(,)𝐵) ⊆ 𝐷)
596adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐷 ⊆ ℝ)
607adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹 ∈ 𝐿1)
618adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹:𝐷⟶ℂ)
62 simpr1 1195 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦 ∈ (𝐴[,]𝐵))
63 simpr2 1196 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑧 ∈ (𝐴[,]𝐵))
641, 55, 56, 57, 58, 59, 60, 61, 62, 63ftc1lem1 25967 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) ∧ 𝑦𝑧) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6554, 64mpdan 687 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6665adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6766ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6867fveq2d 6826 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡))
69 fvexd 6837 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ V)
702ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ)
7170rexrd 11159 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ*)
72 simprl1 1219 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ (𝐴[,]𝐵))
733ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ)
74 elicc2 13308 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7570, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7672, 75mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
7776simp2d 1143 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴𝑦)
78 iooss1 13277 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝐴𝑦) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
7971, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
8073rexrd 11159 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ*)
81 simprl2 1220 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ (𝐴[,]𝐵))
82 elicc2 13308 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8370, 73, 82syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8481, 83mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8584simp3d 1144 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧𝐵)
86 iooss2 13278 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8780, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8879, 87sstrd 3945 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝐵))
895ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝐵) ⊆ 𝐷)
9088, 89sstrd 3945 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ 𝐷)
91 ioombl 25491 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ∈ dom vol
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ∈ dom vol)
93 fvexd 6837 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
948feqmptd 6890 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
9594, 7eqeltrrd 2832 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9695ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9790, 92, 93, 96iblss 25731 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1)
9869, 97itgcl 25710 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡 ∈ ℂ)
9998abscld 15343 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ∈ ℝ)
100 iblmbf 25693 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1 → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
10197, 100syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
102101, 69mbfmptcl 25562 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ ℂ)
103102abscld 15343 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (abs‘(𝐹𝑡)) ∈ ℝ)
10469, 97iblabs 25755 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
105103, 104itgrecl 25724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 ∈ ℝ)
106 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
107106ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ+)
108107rpred 12931 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ)
10969, 97itgabs 25761 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ≤ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
110 mblvol 25456 . . . . . . . . . . . . . . . . 17 ((𝑦(,)𝑧) ∈ dom vol → (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧)))
11191, 110ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧))
112 ioossre 13304 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ⊆ ℝ
113 ovolcl 25404 . . . . . . . . . . . . . . . . . 18 ((𝑦(,)𝑧) ⊆ ℝ → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
11584simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ ℝ)
11676simp1d 1142 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ ℝ)
117115, 116resubcld 11542 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ)
118117rexrd 11159 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ*)
119 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
120119ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ+)
121120rpxrd 12932 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ*)
122 ioossicc 13330 . . . . . . . . . . . . . . . . . . 19 (𝑦(,)𝑧) ⊆ (𝑦[,]𝑧)
123 iccssre 13326 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
124116, 115, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦[,]𝑧) ⊆ ℝ)
125 ovolss 25411 . . . . . . . . . . . . . . . . . . 19 (((𝑦(,)𝑧) ⊆ (𝑦[,]𝑧) ∧ (𝑦[,]𝑧) ⊆ ℝ) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
126122, 124, 125sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
127 simprl3 1221 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦𝑧)
128 ovolicc 25449 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
129116, 115, 127, 128syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
130126, 129breqtrd 5117 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (𝑧𝑦))
131116, 115, 127abssubge0d 15338 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
132 simprr 772 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) < 𝑑)
133131, 132eqbrtrrd 5115 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) < 𝑑)
134114, 118, 121, 130, 133xrlelttrd 13056 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) < 𝑑)
135111, 134eqbrtrid 5126 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol‘(𝑦(,)𝑧)) < 𝑑)
136 sseq1 3960 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → (𝑢𝐷 ↔ (𝑦(,)𝑧) ⊆ 𝐷))
137 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → (vol‘𝑢) = (vol‘(𝑦(,)𝑧)))
138137breq1d 5101 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ((vol‘𝑢) < 𝑑 ↔ (vol‘(𝑦(,)𝑧)) < 𝑑))
139136, 138anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → ((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) ↔ ((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑)))
140 2fveq3 6827 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑡 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑡)))
141140cbvitgv 25703 . . . . . . . . . . . . . . . . . . 19 𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫𝑢(abs‘(𝐹𝑡)) d𝑡
142 itgeq1 25699 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑡)) d𝑡 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
143141, 142eqtrid 2778 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
144143breq1d 5101 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → (∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒 ↔ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
145139, 144imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑦(,)𝑧) → (((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) ↔ (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)))
146 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
147145, 146, 92rspcdva 3578 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
14890, 135, 147mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)
14999, 105, 108, 109, 148lelttrd 11268 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) < 𝑒)
15068, 149eqbrtrd 5113 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)
151150expr 456 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
15225, 35, 38, 53, 151wlogle 11647 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
153152ralrimivva 3175 . . . . . . . . 9 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
154153ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
155154anassrs 467 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
156155reximdva 3145 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
15715, 156mpd 15 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
158 r19.12 3281 . . . . 5 (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
159157, 158syl 17 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
160159ralrimiva 3124 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
161 ralcom 3260 . . 3 (∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
162160, 161sylib 218 . 2 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
163 ax-resscn 11060 . . . 4 ℝ ⊆ ℂ
16437, 163sstrdi 3947 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
165 ssid 3957 . . 3 ℂ ⊆ ℂ
166 elcncf2 24808 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
167164, 165, 166sylancl 586 . 2 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
1689, 162, 167mpbir2and 713 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  cmpt 5172  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  *cxr 11142   < clt 11143  cle 11144  cmin 11341  +crp 12887  (,)cioo 13242  [,]cicc 13245  abscabs 15138  cnccncf 24794  vol*covol 25388  volcvol 25389  MblFncmbf 25540  𝐿1cibl 25543  citg 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-symdif 4203  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cn 23140  df-cnp 23141  df-cmp 23300  df-tx 23475  df-hmeo 23668  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-ovol 25390  df-vol 25391  df-mbf 25545  df-itg1 25546  df-itg2 25547  df-ibl 25548  df-itg 25549  df-0p 25596
This theorem is referenced by:  ftc2  25976
  Copyright terms: Public domain W3C validator