MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1a Structured version   Visualization version   GIF version

Theorem ftc1a 26092
Description: The Fundamental Theorem of Calculus, part one. The function 𝐺 formed by varying the right endpoint of an integral of 𝐹 is continuous if 𝐹 is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1a.f (𝜑𝐹:𝐷⟶ℂ)
Assertion
Ref Expression
ftc1a (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Distinct variable groups:   𝑥,𝑡,𝐷   𝑡,𝐴,𝑥   𝑡,𝐵,𝑥   𝜑,𝑡,𝑥   𝑡,𝐹,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1a
Dummy variables 𝑠 𝑢 𝑤 𝑦 𝑧 𝑟 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . 3 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . 3 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . 3 (𝜑𝐴𝐵)
5 ftc1.s . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . 3 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . 3 (𝜑𝐹 ∈ 𝐿1)
8 ftc1a.f . . 3 (𝜑𝐹:𝐷⟶ℂ)
91, 2, 3, 4, 5, 6, 7, 8ftc1lem2 26091 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
10 fvexd 6921 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑤𝐷) → (𝐹𝑤) ∈ V)
118feqmptd 6976 . . . . . . . . 9 (𝜑𝐹 = (𝑤𝐷 ↦ (𝐹𝑤)))
1211, 7eqeltrrd 2839 . . . . . . . 8 (𝜑 → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
1312adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝑤𝐷 ↦ (𝐹𝑤)) ∈ 𝐿1)
14 simpr 484 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1510, 13, 14itgcn 25894 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
16 oveq12 7439 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → (𝑠𝑟) = (𝑧𝑦))
1716fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘(𝑠𝑟)) = (abs‘(𝑧𝑦)))
1817breq1d 5157 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑑))
19 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
20 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
2119, 20oveqan12d 7449 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑧𝑟 = 𝑦) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑧) − (𝐺𝑦)))
2221fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑠 = 𝑧𝑟 = 𝑦) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑧) − (𝐺𝑦))))
2322breq1d 5157 . . . . . . . . . . . . 13 ((𝑠 = 𝑧𝑟 = 𝑦) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
2418, 23imbi12d 344 . . . . . . . . . . . 12 ((𝑠 = 𝑧𝑟 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
2524ancoms 458 . . . . . . . . . . 11 ((𝑟 = 𝑦𝑠 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
26 oveq12 7439 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → (𝑠𝑟) = (𝑦𝑧))
2726fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘(𝑠𝑟)) = (abs‘(𝑦𝑧)))
2827breq1d 5157 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘(𝑠𝑟)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
29 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑦 → (𝐺𝑠) = (𝐺𝑦))
30 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑧 → (𝐺𝑟) = (𝐺𝑧))
3129, 30oveqan12d 7449 . . . . . . . . . . . . . . 15 ((𝑠 = 𝑦𝑟 = 𝑧) → ((𝐺𝑠) − (𝐺𝑟)) = ((𝐺𝑦) − (𝐺𝑧)))
3231fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑠 = 𝑦𝑟 = 𝑧) → (abs‘((𝐺𝑠) − (𝐺𝑟))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
3332breq1d 5157 . . . . . . . . . . . . 13 ((𝑠 = 𝑦𝑟 = 𝑧) → ((abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
3428, 33imbi12d 344 . . . . . . . . . . . 12 ((𝑠 = 𝑦𝑟 = 𝑧) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
3534ancoms 458 . . . . . . . . . . 11 ((𝑟 = 𝑧𝑠 = 𝑦) → (((abs‘(𝑠𝑟)) < 𝑑 → (abs‘((𝐺𝑠) − (𝐺𝑟))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
36 iccssre 13465 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
372, 3, 36syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3837ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → (𝐴[,]𝐵) ⊆ ℝ)
3937ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ ℝ)
40 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ (𝐴[,]𝐵))
4139, 40sseldd 3995 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℝ)
4241recnd 11286 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑧 ∈ ℂ)
43 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ (𝐴[,]𝐵))
4439, 43sseldd 3995 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℝ)
4544recnd 11286 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝑦 ∈ ℂ)
4642, 45abssubd 15488 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘(𝑧𝑦)) = (abs‘(𝑦𝑧)))
4746breq1d 5157 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑦𝑧)) < 𝑑))
489ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
4948, 40ffvelcdmd 7104 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑧) ∈ ℂ)
5048, 43ffvelcdmd 7104 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (𝐺𝑦) ∈ ℂ)
5149, 50abssubd 15488 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘((𝐺𝑦) − (𝐺𝑧))))
5251breq1d 5157 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒 ↔ (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒))
5347, 52imbi12d 344 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → (((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ((abs‘(𝑦𝑧)) < 𝑑 → (abs‘((𝐺𝑦) − (𝐺𝑧))) < 𝑒)))
54 simpr3 1195 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦𝑧)
552adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴 ∈ ℝ)
563adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐵 ∈ ℝ)
574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐴𝐵)
585adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → (𝐴(,)𝐵) ⊆ 𝐷)
596adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐷 ⊆ ℝ)
607adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹 ∈ 𝐿1)
618adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝐹:𝐷⟶ℂ)
62 simpr1 1193 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑦 ∈ (𝐴[,]𝐵))
63 simpr2 1194 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → 𝑧 ∈ (𝐴[,]𝐵))
641, 55, 56, 57, 58, 59, 60, 61, 62, 63ftc1lem1 26090 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) ∧ 𝑦𝑧) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6554, 64mpdan 687 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6665adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6766ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ((𝐺𝑧) − (𝐺𝑦)) = ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡)
6867fveq2d 6910 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) = (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡))
69 fvexd 6921 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ V)
702ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ)
7170rexrd 11308 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴 ∈ ℝ*)
72 simprl1 1217 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ (𝐴[,]𝐵))
733ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ)
74 elicc2 13448 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7570, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
7672, 75mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
7776simp2d 1142 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐴𝑦)
78 iooss1 13418 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ*𝐴𝑦) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
7971, 77, 78syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝑧))
8073rexrd 11308 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝐵 ∈ ℝ*)
81 simprl2 1218 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ (𝐴[,]𝐵))
82 elicc2 13448 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8370, 73, 82syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8481, 83mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8584simp3d 1143 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧𝐵)
86 iooss2 13419 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8780, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
8879, 87sstrd 4005 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ (𝐴(,)𝐵))
895ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝐴(,)𝐵) ⊆ 𝐷)
9088, 89sstrd 4005 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ⊆ 𝐷)
91 ioombl 25613 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ∈ dom vol
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦(,)𝑧) ∈ dom vol)
93 fvexd 6921 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡𝐷) → (𝐹𝑡) ∈ V)
948feqmptd 6976 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
9594, 7eqeltrrd 2839 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9695ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
9790, 92, 93, 96iblss 25854 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1)
9869, 97itgcl 25833 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡 ∈ ℂ)
9998abscld 15471 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ∈ ℝ)
100 iblmbf 25816 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ 𝐿1 → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
10197, 100syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (𝐹𝑡)) ∈ MblFn)
102101, 69mbfmptcl 25684 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (𝐹𝑡) ∈ ℂ)
103102abscld 15471 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) ∧ 𝑡 ∈ (𝑦(,)𝑧)) → (abs‘(𝐹𝑡)) ∈ ℝ)
10469, 97iblabs 25878 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑡 ∈ (𝑦(,)𝑧) ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
105103, 104itgrecl 25847 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 ∈ ℝ)
106 simprl 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
107106ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ+)
108107rpred 13074 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑒 ∈ ℝ)
10969, 97itgabs 25884 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) ≤ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
110 mblvol 25578 . . . . . . . . . . . . . . . . 17 ((𝑦(,)𝑧) ∈ dom vol → (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧)))
11191, 110ax-mp 5 . . . . . . . . . . . . . . . 16 (vol‘(𝑦(,)𝑧)) = (vol*‘(𝑦(,)𝑧))
112 ioossre 13444 . . . . . . . . . . . . . . . . . 18 (𝑦(,)𝑧) ⊆ ℝ
113 ovolcl 25526 . . . . . . . . . . . . . . . . . 18 ((𝑦(,)𝑧) ⊆ ℝ → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
114112, 113mp1i 13 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ∈ ℝ*)
11584simp1d 1141 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑧 ∈ ℝ)
11676simp1d 1141 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦 ∈ ℝ)
117115, 116resubcld 11688 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ)
118117rexrd 11308 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) ∈ ℝ*)
119 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → 𝑑 ∈ ℝ+)
120119ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ+)
121120rpxrd 13075 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑑 ∈ ℝ*)
122 ioossicc 13469 . . . . . . . . . . . . . . . . . . 19 (𝑦(,)𝑧) ⊆ (𝑦[,]𝑧)
123 iccssre 13465 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦[,]𝑧) ⊆ ℝ)
124116, 115, 123syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑦[,]𝑧) ⊆ ℝ)
125 ovolss 25533 . . . . . . . . . . . . . . . . . . 19 (((𝑦(,)𝑧) ⊆ (𝑦[,]𝑧) ∧ (𝑦[,]𝑧) ⊆ ℝ) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
126122, 124, 125sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (vol*‘(𝑦[,]𝑧)))
127 simprl3 1219 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → 𝑦𝑧)
128 ovolicc 25571 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦𝑧) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
129116, 115, 127, 128syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦[,]𝑧)) = (𝑧𝑦))
130126, 129breqtrd 5173 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) ≤ (𝑧𝑦))
131116, 115, 127abssubge0d 15466 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) = (𝑧𝑦))
132 simprr 773 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘(𝑧𝑦)) < 𝑑)
133131, 132eqbrtrrd 5171 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (𝑧𝑦) < 𝑑)
134114, 118, 121, 130, 133xrlelttrd 13198 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol*‘(𝑦(,)𝑧)) < 𝑑)
135111, 134eqbrtrid 5182 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (vol‘(𝑦(,)𝑧)) < 𝑑)
136 sseq1 4020 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → (𝑢𝐷 ↔ (𝑦(,)𝑧) ⊆ 𝐷))
137 fveq2 6906 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → (vol‘𝑢) = (vol‘(𝑦(,)𝑧)))
138137breq1d 5157 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ((vol‘𝑢) < 𝑑 ↔ (vol‘(𝑦(,)𝑧)) < 𝑑))
139136, 138anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → ((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) ↔ ((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑)))
140 2fveq3 6911 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑡 → (abs‘(𝐹𝑤)) = (abs‘(𝐹𝑡)))
141140cbvitgv 25826 . . . . . . . . . . . . . . . . . . 19 𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫𝑢(abs‘(𝐹𝑡)) d𝑡
142 itgeq1 25822 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑡)) d𝑡 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
143141, 142eqtrid 2786 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑦(,)𝑧) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 = ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡)
144143breq1d 5157 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑦(,)𝑧) → (∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒 ↔ ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
145139, 144imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑦(,)𝑧) → (((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) ↔ (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)))
146 simplr 769 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒))
147145, 146, 92rspcdva 3622 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (((𝑦(,)𝑧) ⊆ 𝐷 ∧ (vol‘(𝑦(,)𝑧)) < 𝑑) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒))
14890, 135, 147mp2and 699 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → ∫(𝑦(,)𝑧)(abs‘(𝐹𝑡)) d𝑡 < 𝑒)
14999, 105, 108, 109, 148lelttrd 11416 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘∫(𝑦(,)𝑧)(𝐹𝑡) d𝑡) < 𝑒)
15068, 149eqbrtrd 5169 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ ((𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧) ∧ (abs‘(𝑧𝑦)) < 𝑑)) → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)
151150expr 456 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑦𝑧)) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
15225, 35, 38, 53, 151wlogle 11793 . . . . . . . . . 10 ((((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑧 ∈ (𝐴[,]𝐵))) → ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
153152ralrimivva 3199 . . . . . . . . 9 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) ∧ ∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒)) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
154153ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑑 ∈ ℝ+)) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
155154anassrs 467 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
156155reximdva 3165 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐷 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘(𝐹𝑤)) d𝑤 < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒)))
15715, 156mpd 15 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
158 r19.12 3311 . . . . 5 (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
159157, 158syl 17 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
160159ralrimiva 3143 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
161 ralcom 3286 . . 3 (∀𝑒 ∈ ℝ+𝑦 ∈ (𝐴[,]𝐵)∃𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
162160, 161sylib 218 . 2 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))
163 ax-resscn 11209 . . . 4 ℝ ⊆ ℂ
16437, 163sstrdi 4007 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
165 ssid 4017 . . 3 ℂ ⊆ ℂ
166 elcncf2 24929 . . 3 (((𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
167164, 165, 166sylancl 586 . 2 (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ) ↔ (𝐺:(𝐴[,]𝐵)⟶ℂ ∧ ∀𝑦 ∈ (𝐴[,]𝐵)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ (𝐴[,]𝐵)((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝐺𝑧) − (𝐺𝑦))) < 𝑒))))
1689, 162, 167mpbir2and 713 1 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962   class class class wbr 5147  cmpt 5230  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  *cxr 11291   < clt 11292  cle 11293  cmin 11489  +crp 13031  (,)cioo 13383  [,]cicc 13386  abscabs 15269  cnccncf 24915  vol*covol 25510  volcvol 25511  MblFncmbf 25662  𝐿1cibl 25665  citg 25666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cn 23250  df-cnp 23251  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718
This theorem is referenced by:  ftc2  26099
  Copyright terms: Public domain W3C validator