Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimass Structured version   Visualization version   GIF version

Theorem intimass 43616
Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimass ( 𝐴𝐵) ⊆ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Distinct variable groups:   𝑥,𝑎,𝐴   𝐵,𝑎,𝑥

Proof of Theorem intimass
Dummy variables 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.12 3285 . . 3 (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 → ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
2 elimaint 43611 . . 3 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
3 elintima 43615 . . 3 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
41, 2, 33imtr4i 292 . 2 (𝑦 ∈ ( 𝐴𝐵) → 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
54ssriv 3947 1 ( 𝐴𝐵) ⊆ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3911  cop 4591   cint 4906  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  intimass2  43617
  Copyright terms: Public domain W3C validator