Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimass Structured version   Visualization version   GIF version

Theorem intimass 40134
 Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimass ( 𝐴𝐵) ⊆ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
Distinct variable groups:   𝑥,𝑎,𝐴   𝐵,𝑎,𝑥

Proof of Theorem intimass
Dummy variables 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.12 3311 . . 3 (∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 → ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
2 elimaint 40128 . . 3 (𝑦 ∈ ( 𝐴𝐵) ↔ ∃𝑏𝐵𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎)
3 elintima 40133 . . 3 (𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)} ↔ ∀𝑎𝐴𝑏𝐵𝑏, 𝑦⟩ ∈ 𝑎)
41, 2, 33imtr4i 294 . 2 (𝑦 ∈ ( 𝐴𝐵) → 𝑦 {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)})
54ssriv 3950 1 ( 𝐴𝐵) ⊆ {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎𝐵)}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1537   ∈ wcel 2114  {cab 2798  ∀wral 3125  ∃wrex 3126   ⊆ wss 3913  ⟨cop 4549  ∩ cint 4852   “ cima 5534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-int 4853  df-br 5043  df-opab 5105  df-xp 5537  df-cnv 5539  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544 This theorem is referenced by:  intimass2  40135
 Copyright terms: Public domain W3C validator