![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimass | Structured version Visualization version GIF version |
Description: The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intimass | ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.12 3242 | . . 3 ⊢ (∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎 → ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | |
2 | elimaint 38711 | . . 3 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) | |
3 | elintima 38716 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | |
4 | 1, 2, 3 | 3imtr4i 284 | . 2 ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) → 𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) |
5 | 4 | ssriv 3800 | 1 ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 {cab 2783 ∀wral 3087 ∃wrex 3088 ⊆ wss 3767 〈cop 4372 ∩ cint 4665 “ cima 5313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-int 4666 df-br 4842 df-opab 4904 df-xp 5316 df-cnv 5318 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 |
This theorem is referenced by: intimass2 38718 |
Copyright terms: Public domain | W3C validator |