![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoid | Structured version Visualization version GIF version |
Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringi.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngoid | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ringi.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ringi.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | rngoi 37900 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑢𝐻𝑥)𝐻𝑦) = (𝑢𝐻(𝑥𝐻𝑦)) ∧ (𝑢𝐻(𝑥𝐺𝑦)) = ((𝑢𝐻𝑥)𝐺(𝑢𝐻𝑦)) ∧ ((𝑢𝐺𝑥)𝐻𝑦) = ((𝑢𝐻𝑦)𝐺(𝑥𝐻𝑦))) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))) |
5 | 4 | simprrd 774 | . . 3 ⊢ (𝑅 ∈ RingOps → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
6 | r19.12 3314 | . . 3 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
8 | oveq2 7446 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑢𝐻𝑥) = (𝑢𝐻𝐴)) | |
9 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
10 | 8, 9 | eqeq12d 2753 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑢𝐻𝐴) = 𝐴)) |
11 | oveq1 7445 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑢) = (𝐴𝐻𝑢)) | |
12 | 11, 9 | eqeq12d 2753 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝐴𝐻𝑢) = 𝐴)) |
13 | 10, 12 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴))) |
14 | 13 | rexbidv 3179 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴))) |
15 | 14 | rspccva 3624 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) |
16 | 7, 15 | sylan 580 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 × cxp 5691 ran crn 5694 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 2nd c2nd 8021 AbelOpcablo 30589 RingOpscrngo 37895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-1st 8022 df-2nd 8023 df-rngo 37896 |
This theorem is referenced by: rngo2 37908 |
Copyright terms: Public domain | W3C validator |