| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoid | Structured version Visualization version GIF version | ||
| Description: The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ringi.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngoid | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | ringi.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | ringi.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | rngoi 37959 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑢𝐻𝑥)𝐻𝑦) = (𝑢𝐻(𝑥𝐻𝑦)) ∧ (𝑢𝐻(𝑥𝐺𝑦)) = ((𝑢𝐻𝑥)𝐺(𝑢𝐻𝑦)) ∧ ((𝑢𝐺𝑥)𝐻𝑦) = ((𝑢𝐻𝑦)𝐺(𝑥𝐻𝑦))) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)))) |
| 5 | 4 | simprrd 773 | . . 3 ⊢ (𝑅 ∈ RingOps → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 6 | r19.12 3282 | . . 3 ⊢ (∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → ∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) |
| 8 | oveq2 7360 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑢𝐻𝑥) = (𝑢𝐻𝐴)) | |
| 9 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 10 | 8, 9 | eqeq12d 2749 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑢𝐻𝑥) = 𝑥 ↔ (𝑢𝐻𝐴) = 𝐴)) |
| 11 | oveq1 7359 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑢) = (𝐴𝐻𝑢)) | |
| 12 | 11, 9 | eqeq12d 2749 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑢) = 𝑥 ↔ (𝐴𝐻𝑢) = 𝐴)) |
| 13 | 10, 12 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴))) |
| 14 | 13 | rexbidv 3157 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ↔ ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴))) |
| 15 | 14 | rspccva 3572 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥) ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) |
| 16 | 7, 15 | sylan 580 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 × cxp 5617 ran crn 5620 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 AbelOpcablo 30526 RingOpscrngo 37954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-1st 7927 df-2nd 7928 df-rngo 37955 |
| This theorem is referenced by: rngo2 37967 |
| Copyright terms: Public domain | W3C validator |