MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 30064
Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st𝑐)
clwlknf1oclwwlkn.b 𝐵 = (2nd𝑐)
clwlknf1oclwwlkn.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐶,𝑐   𝐺,𝑐,𝑤   𝑤,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑤,𝑐)   𝐵(𝑤,𝑐)   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
2 2fveq3 6827 . . . . . . . 8 (𝑠 = 𝑤 → (♯‘(1st𝑠)) = (♯‘(1st𝑤)))
32breq2d 5101 . . . . . . 7 (𝑠 = 𝑤 → (1 ≤ (♯‘(1st𝑠)) ↔ 1 ≤ (♯‘(1st𝑤))))
43cbvrabv 3405 . . . . . 6 {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
5 fveq2 6822 . . . . . . . 8 (𝑑 = 𝑐 → (2nd𝑑) = (2nd𝑐))
6 2fveq3 6827 . . . . . . . . 9 (𝑑 = 𝑐 → (♯‘(2nd𝑑)) = (♯‘(2nd𝑐)))
76oveq1d 7361 . . . . . . . 8 (𝑑 = 𝑐 → ((♯‘(2nd𝑑)) − 1) = ((♯‘(2nd𝑐)) − 1))
85, 7oveq12d 7364 . . . . . . 7 (𝑑 = 𝑐 → ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
98cbvmptv 5193 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
104, 9clwlkclwwlkf1o 29991 . . . . 5 (𝐺 ∈ USPGraph → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
1110adantr 480 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
12 2fveq3 6827 . . . . . . . . . 10 (𝑤 = 𝑠 → (♯‘(1st𝑤)) = (♯‘(1st𝑠)))
1312breq2d 5101 . . . . . . . . 9 (𝑤 = 𝑠 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑠))))
1413cbvrabv 3405 . . . . . . . 8 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
1514mpteq1i 5180 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
16 fveq2 6822 . . . . . . . . 9 (𝑐 = 𝑑 → (2nd𝑐) = (2nd𝑑))
17 2fveq3 6827 . . . . . . . . . 10 (𝑐 = 𝑑 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑑)))
1817oveq1d 7361 . . . . . . . . 9 (𝑐 = 𝑑 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑑)) − 1))
1916, 18oveq12d 7364 . . . . . . . 8 (𝑐 = 𝑑 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2019cbvmptv 5193 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2115, 20eqtri 2754 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))))
234eqcomi 2740 . . . . . 6 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))})
25 eqidd 2732 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (ClWWalks‘𝐺) = (ClWWalks‘𝐺))
2622, 24, 25f1oeq123d 6757 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺)))
2711, 26mpbird 257 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺))
28 fveq2 6822 . . . . . 6 (𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
29283ad2ant3 1135 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
30 2fveq3 6827 . . . . . . . . 9 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
3130breq2d 5101 . . . . . . . 8 (𝑤 = 𝑐 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑐))))
3231elrab 3642 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))))
33 clwlknf1oclwwlknlem1 30061 . . . . . . 7 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3432, 33sylbi 217 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
35343ad2ant2 1134 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3629, 35eqtrd 2766 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘(1st𝑐)))
3736eqeq1d 2733 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → ((♯‘𝑠) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
381, 27, 37f1oresrab 7060 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st𝑐)
40 clwlknf1oclwwlkn.b . . . . 5 𝐵 = (2nd𝑐)
41 clwlknf1oclwwlkn.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 30063 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → 𝐵 = (2nd𝑐))
45 clwlkwlk 29753 . . . . . . . . . . 11 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
46 wlkcpr 29607 . . . . . . . . . . . 12 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4739fveq2i 6825 . . . . . . . . . . . . 13 (♯‘𝐴) = (♯‘(1st𝑐))
48 wlklenvm1 29600 . . . . . . . . . . . . 13 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(1st𝑐)) = ((♯‘(2nd𝑐)) − 1))
4947, 48eqtrid 2778 . . . . . . . . . . . 12 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5046, 49sylbi 217 . . . . . . . . . . 11 (𝑐 ∈ (Walks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5251adantr 480 . . . . . . . . 9 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5332, 52sylbi 217 . . . . . . . 8 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5453adantl 481 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5544, 54oveq12d 7364 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (𝐵 prefix (♯‘𝐴)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
5655mpteq2dva 5182 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
5730eqeq1d 2733 . . . . . . . 8 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
5857cbvrabv 3405 . . . . . . 7 {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}
59 nnge1 12153 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
60 breq2 5093 . . . . . . . . . . . 12 ((♯‘(1st𝑐)) = 𝑁 → (1 ≤ (♯‘(1st𝑐)) ↔ 1 ≤ 𝑁))
6159, 60syl5ibrcom 247 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6261adantl 481 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6362adantr 480 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6463pm4.71rd 562 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 ↔ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6564rabbidva 3401 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6658, 65eqtrid 2778 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6732anbi1i 624 . . . . . . . 8 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁))
68 anass 468 . . . . . . . 8 (((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6967, 68bitri 275 . . . . . . 7 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
7069rabbia2 3398 . . . . . 6 {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)}
7166, 41, 703eqtr4g 2791 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
7256, 71reseq12d 5928 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶) = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
7343, 72eqtrd 2766 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
74 clwlknf1oclwwlknlem2 30062 . . . . 5 (𝑁 ∈ ℕ → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7574adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7675, 41, 703eqtr4g 2791 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
77 clwwlkn 30006 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
7973, 76, 78f1oeq123d 6757 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}))
8038, 79mpbird 257 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  cmpt 5170  cres 5616  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  1c1 11007  cle 11147  cmin 11344  cn 12125  chash 14237   prefix cpfx 14578  USPGraphcuspgr 29126  Walkscwlks 29575  ClWalkscclwlks 29748  ClWWalkscclwwlk 29961   ClWWalksN cclwwlkn 30004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-wlks 29578  df-clwlks 29749  df-clwwlk 29962  df-clwwlkn 30005
This theorem is referenced by:  clwlkssizeeq  30065  clwwlknonclwlknonf1o  30342
  Copyright terms: Public domain W3C validator