Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’ (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) = (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) |
2 | | 2fveq3 6893 |
. . . . . . . 8
β’ (π = π€ β (β―β(1st
βπ )) =
(β―β(1st βπ€))) |
3 | 2 | breq2d 5159 |
. . . . . . 7
β’ (π = π€ β (1 β€
(β―β(1st βπ )) β 1 β€
(β―β(1st βπ€)))) |
4 | 3 | cbvrabv 3442 |
. . . . . 6
β’ {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} = {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} |
5 | | fveq2 6888 |
. . . . . . . 8
β’ (π = π β (2nd βπ) = (2nd βπ)) |
6 | | 2fveq3 6893 |
. . . . . . . . 9
β’ (π = π β (β―β(2nd
βπ)) =
(β―β(2nd βπ))) |
7 | 6 | oveq1d 7420 |
. . . . . . . 8
β’ (π = π β ((β―β(2nd
βπ)) β 1) =
((β―β(2nd βπ)) β 1)) |
8 | 5, 7 | oveq12d 7423 |
. . . . . . 7
β’ (π = π β ((2nd βπ) prefix
((β―β(2nd βπ)) β 1)) = ((2nd
βπ) prefix
((β―β(2nd βπ)) β 1))) |
9 | 8 | cbvmptv 5260 |
. . . . . 6
β’ (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) = (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) |
10 | 4, 9 | clwlkclwwlkf1o 29253 |
. . . . 5
β’ (πΊ β USPGraph β (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))):{π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))}β1-1-ontoβ(ClWWalksβπΊ)) |
11 | 10 | adantr 481 |
. . . 4
β’ ((πΊ β USPGraph β§ π β β) β (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))):{π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))}β1-1-ontoβ(ClWWalksβπΊ)) |
12 | | 2fveq3 6893 |
. . . . . . . . . 10
β’ (π€ = π β (β―β(1st
βπ€)) =
(β―β(1st βπ ))) |
13 | 12 | breq2d 5159 |
. . . . . . . . 9
β’ (π€ = π β (1 β€
(β―β(1st βπ€)) β 1 β€
(β―β(1st βπ )))) |
14 | 13 | cbvrabv 3442 |
. . . . . . . 8
β’ {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} = {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} |
15 | 14 | mpteq1i 5243 |
. . . . . . 7
β’ (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) = (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) |
16 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = π β (2nd βπ) = (2nd βπ)) |
17 | | 2fveq3 6893 |
. . . . . . . . . 10
β’ (π = π β (β―β(2nd
βπ)) =
(β―β(2nd βπ))) |
18 | 17 | oveq1d 7420 |
. . . . . . . . 9
β’ (π = π β ((β―β(2nd
βπ)) β 1) =
((β―β(2nd βπ)) β 1)) |
19 | 16, 18 | oveq12d 7423 |
. . . . . . . 8
β’ (π = π β ((2nd βπ) prefix
((β―β(2nd βπ)) β 1)) = ((2nd
βπ) prefix
((β―β(2nd βπ)) β 1))) |
20 | 19 | cbvmptv 5260 |
. . . . . . 7
β’ (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) = (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) |
21 | 15, 20 | eqtri 2760 |
. . . . . 6
β’ (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) = (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) |
22 | 21 | a1i 11 |
. . . . 5
β’ ((πΊ β USPGraph β§ π β β) β (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) = (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1)))) |
23 | 4 | eqcomi 2741 |
. . . . . 6
β’ {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} = {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} |
24 | 23 | a1i 11 |
. . . . 5
β’ ((πΊ β USPGraph β§ π β β) β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} = {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))}) |
25 | | eqidd 2733 |
. . . . 5
β’ ((πΊ β USPGraph β§ π β β) β
(ClWWalksβπΊ) =
(ClWWalksβπΊ)) |
26 | 22, 24, 25 | f1oeq123d 6824 |
. . . 4
β’ ((πΊ β USPGraph β§ π β β) β ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))):{π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))}β1-1-ontoβ(ClWWalksβπΊ) β (π β {π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))):{π β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ ))}β1-1-ontoβ(ClWWalksβπΊ))) |
27 | 11, 26 | mpbird 256 |
. . 3
β’ ((πΊ β USPGraph β§ π β β) β (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))):{π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))}β1-1-ontoβ(ClWWalksβπΊ)) |
28 | | fveq2 6888 |
. . . . . 6
β’ (π = ((2nd βπ) prefix
((β―β(2nd βπ)) β 1)) β (β―βπ ) =
(β―β((2nd βπ) prefix ((β―β(2nd
βπ)) β
1)))) |
29 | 28 | 3ad2ant3 1135 |
. . . . 5
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β§ π = ((2nd βπ) prefix ((β―β(2nd
βπ)) β 1)))
β (β―βπ ) =
(β―β((2nd βπ) prefix ((β―β(2nd
βπ)) β
1)))) |
30 | | 2fveq3 6893 |
. . . . . . . . 9
β’ (π€ = π β (β―β(1st
βπ€)) =
(β―β(1st βπ))) |
31 | 30 | breq2d 5159 |
. . . . . . . 8
β’ (π€ = π β (1 β€
(β―β(1st βπ€)) β 1 β€
(β―β(1st βπ)))) |
32 | 31 | elrab 3682 |
. . . . . . 7
β’ (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β (π β (ClWalksβπΊ) β§ 1 β€
(β―β(1st βπ)))) |
33 | | clwlknf1oclwwlknlem1 29323 |
. . . . . . 7
β’ ((π β (ClWalksβπΊ) β§ 1 β€
(β―β(1st βπ))) β (β―β((2nd
βπ) prefix
((β―β(2nd βπ)) β 1))) =
(β―β(1st βπ))) |
34 | 32, 33 | sylbi 216 |
. . . . . 6
β’ (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β (β―β((2nd
βπ) prefix
((β―β(2nd βπ)) β 1))) =
(β―β(1st βπ))) |
35 | 34 | 3ad2ant2 1134 |
. . . . 5
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β§ π = ((2nd βπ) prefix ((β―β(2nd
βπ)) β 1)))
β (β―β((2nd βπ) prefix ((β―β(2nd
βπ)) β 1))) =
(β―β(1st βπ))) |
36 | 29, 35 | eqtrd 2772 |
. . . 4
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β§ π = ((2nd βπ) prefix ((β―β(2nd
βπ)) β 1)))
β (β―βπ ) =
(β―β(1st βπ))) |
37 | 36 | eqeq1d 2734 |
. . 3
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β§ π = ((2nd βπ) prefix ((β―β(2nd
βπ)) β 1)))
β ((β―βπ ) =
π β
(β―β(1st βπ)) = π)) |
38 | 1, 27, 37 | f1oresrab 7121 |
. 2
β’ ((πΊ β USPGraph β§ π β β) β ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) βΎ {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π}):{π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π}β1-1-ontoβ{π β (ClWWalksβπΊ) β£ (β―βπ ) = π}) |
39 | | clwlknf1oclwwlkn.a |
. . . . 5
β’ π΄ = (1st βπ) |
40 | | clwlknf1oclwwlkn.b |
. . . . 5
β’ π΅ = (2nd βπ) |
41 | | clwlknf1oclwwlkn.c |
. . . . 5
β’ πΆ = {π€ β (ClWalksβπΊ) β£ (β―β(1st
βπ€)) = π} |
42 | | clwlknf1oclwwlkn.f |
. . . . 5
β’ πΉ = (π β πΆ β¦ (π΅ prefix (β―βπ΄))) |
43 | 39, 40, 41, 42 | clwlknf1oclwwlknlem3 29325 |
. . . 4
β’ ((πΊ β USPGraph β§ π β β) β πΉ = ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ (π΅ prefix (β―βπ΄))) βΎ πΆ)) |
44 | 40 | a1i 11 |
. . . . . . 7
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))}) β π΅ = (2nd βπ)) |
45 | | clwlkwlk 29021 |
. . . . . . . . . . 11
β’ (π β (ClWalksβπΊ) β π β (WalksβπΊ)) |
46 | | wlkcpr 28875 |
. . . . . . . . . . . 12
β’ (π β (WalksβπΊ) β (1st
βπ)(WalksβπΊ)(2nd βπ)) |
47 | 39 | fveq2i 6891 |
. . . . . . . . . . . . 13
β’
(β―βπ΄) =
(β―β(1st βπ)) |
48 | | wlklenvm1 28868 |
. . . . . . . . . . . . 13
β’
((1st βπ)(WalksβπΊ)(2nd βπ) β (β―β(1st
βπ)) =
((β―β(2nd βπ)) β 1)) |
49 | 47, 48 | eqtrid 2784 |
. . . . . . . . . . . 12
β’
((1st βπ)(WalksβπΊ)(2nd βπ) β (β―βπ΄) = ((β―β(2nd
βπ)) β
1)) |
50 | 46, 49 | sylbi 216 |
. . . . . . . . . . 11
β’ (π β (WalksβπΊ) β (β―βπ΄) =
((β―β(2nd βπ)) β 1)) |
51 | 45, 50 | syl 17 |
. . . . . . . . . 10
β’ (π β (ClWalksβπΊ) β (β―βπ΄) =
((β―β(2nd βπ)) β 1)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
β’ ((π β (ClWalksβπΊ) β§ 1 β€
(β―β(1st βπ))) β (β―βπ΄) = ((β―β(2nd
βπ)) β
1)) |
53 | 32, 52 | sylbi 216 |
. . . . . . . 8
β’ (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β (β―βπ΄) = ((β―β(2nd
βπ)) β
1)) |
54 | 53 | adantl 482 |
. . . . . . 7
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))}) β (β―βπ΄) = ((β―β(2nd
βπ)) β
1)) |
55 | 44, 54 | oveq12d 7423 |
. . . . . 6
β’ (((πΊ β USPGraph β§ π β β) β§ π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))}) β (π΅ prefix (β―βπ΄)) = ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) |
56 | 55 | mpteq2dva 5247 |
. . . . 5
β’ ((πΊ β USPGraph β§ π β β) β (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ (π΅ prefix (β―βπ΄))) = (π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1)))) |
57 | 30 | eqeq1d 2734 |
. . . . . . . 8
β’ (π€ = π β ((β―β(1st
βπ€)) = π β
(β―β(1st βπ)) = π)) |
58 | 57 | cbvrabv 3442 |
. . . . . . 7
β’ {π€ β (ClWalksβπΊ) β£
(β―β(1st βπ€)) = π} = {π β (ClWalksβπΊ) β£ (β―β(1st
βπ)) = π} |
59 | | nnge1 12236 |
. . . . . . . . . . . 12
β’ (π β β β 1 β€
π) |
60 | | breq2 5151 |
. . . . . . . . . . . 12
β’
((β―β(1st βπ)) = π β (1 β€
(β―β(1st βπ)) β 1 β€ π)) |
61 | 59, 60 | syl5ibrcom 246 |
. . . . . . . . . . 11
β’ (π β β β
((β―β(1st βπ)) = π β 1 β€
(β―β(1st βπ)))) |
62 | 61 | adantl 482 |
. . . . . . . . . 10
β’ ((πΊ β USPGraph β§ π β β) β
((β―β(1st βπ)) = π β 1 β€
(β―β(1st βπ)))) |
63 | 62 | adantr 481 |
. . . . . . . . 9
β’ (((πΊ β USPGraph β§ π β β) β§ π β (ClWalksβπΊ)) β
((β―β(1st βπ)) = π β 1 β€
(β―β(1st βπ)))) |
64 | 63 | pm4.71rd 563 |
. . . . . . . 8
β’ (((πΊ β USPGraph β§ π β β) β§ π β (ClWalksβπΊ)) β
((β―β(1st βπ)) = π β (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π))) |
65 | 64 | rabbidva 3439 |
. . . . . . 7
β’ ((πΊ β USPGraph β§ π β β) β {π β (ClWalksβπΊ) β£
(β―β(1st βπ)) = π} = {π β (ClWalksβπΊ) β£ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π)}) |
66 | 58, 65 | eqtrid 2784 |
. . . . . 6
β’ ((πΊ β USPGraph β§ π β β) β {π€ β (ClWalksβπΊ) β£
(β―β(1st βπ€)) = π} = {π β (ClWalksβπΊ) β£ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π)}) |
67 | 32 | anbi1i 624 |
. . . . . . . 8
β’ ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β§ (β―β(1st
βπ)) = π) β ((π β (ClWalksβπΊ) β§ 1 β€
(β―β(1st βπ))) β§ (β―β(1st
βπ)) = π)) |
68 | | anass 469 |
. . . . . . . 8
β’ (((π β (ClWalksβπΊ) β§ 1 β€
(β―β(1st βπ))) β§ (β―β(1st
βπ)) = π) β (π β (ClWalksβπΊ) β§ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π))) |
69 | 67, 68 | bitri 274 |
. . . . . . 7
β’ ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β§ (β―β(1st
βπ)) = π) β (π β (ClWalksβπΊ) β§ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π))) |
70 | 69 | rabbia2 3435 |
. . . . . 6
β’ {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π} = {π β (ClWalksβπΊ) β£ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π)} |
71 | 66, 41, 70 | 3eqtr4g 2797 |
. . . . 5
β’ ((πΊ β USPGraph β§ π β β) β πΆ = {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π}) |
72 | 56, 71 | reseq12d 5980 |
. . . 4
β’ ((πΊ β USPGraph β§ π β β) β ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ (π΅ prefix (β―βπ΄))) βΎ πΆ) = ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) βΎ {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π})) |
73 | 43, 72 | eqtrd 2772 |
. . 3
β’ ((πΊ β USPGraph β§ π β β) β πΉ = ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) βΎ {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π})) |
74 | | clwlknf1oclwwlknlem2 29324 |
. . . . 5
β’ (π β β β {π€ β (ClWalksβπΊ) β£
(β―β(1st βπ€)) = π} = {π β (ClWalksβπΊ) β£ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π)}) |
75 | 74 | adantl 482 |
. . . 4
β’ ((πΊ β USPGraph β§ π β β) β {π€ β (ClWalksβπΊ) β£
(β―β(1st βπ€)) = π} = {π β (ClWalksβπΊ) β£ (1 β€
(β―β(1st βπ)) β§ (β―β(1st
βπ)) = π)}) |
76 | 75, 41, 70 | 3eqtr4g 2797 |
. . 3
β’ ((πΊ β USPGraph β§ π β β) β πΆ = {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π}) |
77 | | clwwlkn 29268 |
. . . 4
β’ (π ClWWalksN πΊ) = {π β (ClWWalksβπΊ) β£ (β―βπ ) = π} |
78 | 77 | a1i 11 |
. . 3
β’ ((πΊ β USPGraph β§ π β β) β (π ClWWalksN πΊ) = {π β (ClWWalksβπΊ) β£ (β―βπ ) = π}) |
79 | 73, 76, 78 | f1oeq123d 6824 |
. 2
β’ ((πΊ β USPGraph β§ π β β) β (πΉ:πΆβ1-1-ontoβ(π ClWWalksN πΊ) β ((π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β¦ ((2nd βπ) prefix
((β―β(2nd βπ)) β 1))) βΎ {π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π}):{π β {π€ β (ClWalksβπΊ) β£ 1 β€
(β―β(1st βπ€))} β£ (β―β(1st
βπ)) = π}β1-1-ontoβ{π β (ClWWalksβπΊ) β£ (β―βπ ) = π})) |
80 | 38, 79 | mpbird 256 |
1
β’ ((πΊ β USPGraph β§ π β β) β πΉ:πΆβ1-1-ontoβ(π ClWWalksN πΊ)) |