MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 29986
Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st𝑐)
clwlknf1oclwwlkn.b 𝐵 = (2nd𝑐)
clwlknf1oclwwlkn.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐶,𝑐   𝐺,𝑐,𝑤   𝑤,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑤,𝑐)   𝐵(𝑤,𝑐)   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
2 2fveq3 6845 . . . . . . . 8 (𝑠 = 𝑤 → (♯‘(1st𝑠)) = (♯‘(1st𝑤)))
32breq2d 5114 . . . . . . 7 (𝑠 = 𝑤 → (1 ≤ (♯‘(1st𝑠)) ↔ 1 ≤ (♯‘(1st𝑤))))
43cbvrabv 3413 . . . . . 6 {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
5 fveq2 6840 . . . . . . . 8 (𝑑 = 𝑐 → (2nd𝑑) = (2nd𝑐))
6 2fveq3 6845 . . . . . . . . 9 (𝑑 = 𝑐 → (♯‘(2nd𝑑)) = (♯‘(2nd𝑐)))
76oveq1d 7384 . . . . . . . 8 (𝑑 = 𝑐 → ((♯‘(2nd𝑑)) − 1) = ((♯‘(2nd𝑐)) − 1))
85, 7oveq12d 7387 . . . . . . 7 (𝑑 = 𝑐 → ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
98cbvmptv 5206 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
104, 9clwlkclwwlkf1o 29913 . . . . 5 (𝐺 ∈ USPGraph → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
1110adantr 480 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
12 2fveq3 6845 . . . . . . . . . 10 (𝑤 = 𝑠 → (♯‘(1st𝑤)) = (♯‘(1st𝑠)))
1312breq2d 5114 . . . . . . . . 9 (𝑤 = 𝑠 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑠))))
1413cbvrabv 3413 . . . . . . . 8 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
1514mpteq1i 5193 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
16 fveq2 6840 . . . . . . . . 9 (𝑐 = 𝑑 → (2nd𝑐) = (2nd𝑑))
17 2fveq3 6845 . . . . . . . . . 10 (𝑐 = 𝑑 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑑)))
1817oveq1d 7384 . . . . . . . . 9 (𝑐 = 𝑑 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑑)) − 1))
1916, 18oveq12d 7387 . . . . . . . 8 (𝑐 = 𝑑 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2019cbvmptv 5206 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2115, 20eqtri 2752 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))))
234eqcomi 2738 . . . . . 6 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))})
25 eqidd 2730 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (ClWWalks‘𝐺) = (ClWWalks‘𝐺))
2622, 24, 25f1oeq123d 6776 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺)))
2711, 26mpbird 257 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺))
28 fveq2 6840 . . . . . 6 (𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
29283ad2ant3 1135 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
30 2fveq3 6845 . . . . . . . . 9 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
3130breq2d 5114 . . . . . . . 8 (𝑤 = 𝑐 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑐))))
3231elrab 3656 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))))
33 clwlknf1oclwwlknlem1 29983 . . . . . . 7 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3432, 33sylbi 217 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
35343ad2ant2 1134 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3629, 35eqtrd 2764 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘(1st𝑐)))
3736eqeq1d 2731 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → ((♯‘𝑠) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
381, 27, 37f1oresrab 7081 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st𝑐)
40 clwlknf1oclwwlkn.b . . . . 5 𝐵 = (2nd𝑐)
41 clwlknf1oclwwlkn.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 29985 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → 𝐵 = (2nd𝑐))
45 clwlkwlk 29678 . . . . . . . . . . 11 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
46 wlkcpr 29532 . . . . . . . . . . . 12 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4739fveq2i 6843 . . . . . . . . . . . . 13 (♯‘𝐴) = (♯‘(1st𝑐))
48 wlklenvm1 29525 . . . . . . . . . . . . 13 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(1st𝑐)) = ((♯‘(2nd𝑐)) − 1))
4947, 48eqtrid 2776 . . . . . . . . . . . 12 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5046, 49sylbi 217 . . . . . . . . . . 11 (𝑐 ∈ (Walks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5251adantr 480 . . . . . . . . 9 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5332, 52sylbi 217 . . . . . . . 8 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5453adantl 481 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5544, 54oveq12d 7387 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (𝐵 prefix (♯‘𝐴)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
5655mpteq2dva 5195 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
5730eqeq1d 2731 . . . . . . . 8 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
5857cbvrabv 3413 . . . . . . 7 {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}
59 nnge1 12190 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
60 breq2 5106 . . . . . . . . . . . 12 ((♯‘(1st𝑐)) = 𝑁 → (1 ≤ (♯‘(1st𝑐)) ↔ 1 ≤ 𝑁))
6159, 60syl5ibrcom 247 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6261adantl 481 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6362adantr 480 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6463pm4.71rd 562 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 ↔ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6564rabbidva 3409 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6658, 65eqtrid 2776 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6732anbi1i 624 . . . . . . . 8 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁))
68 anass 468 . . . . . . . 8 (((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6967, 68bitri 275 . . . . . . 7 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
7069rabbia2 3405 . . . . . 6 {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)}
7166, 41, 703eqtr4g 2789 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
7256, 71reseq12d 5940 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶) = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
7343, 72eqtrd 2764 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
74 clwlknf1oclwwlknlem2 29984 . . . . 5 (𝑁 ∈ ℕ → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7574adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7675, 41, 703eqtr4g 2789 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
77 clwwlkn 29928 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
7973, 76, 78f1oeq123d 6776 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}))
8038, 79mpbird 257 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402   class class class wbr 5102  cmpt 5183  cres 5633  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  1c1 11045  cle 11185  cmin 11381  cn 12162  chash 14271   prefix cpfx 14611  USPGraphcuspgr 29051  Walkscwlks 29500  ClWalkscclwlks 29673  ClWWalkscclwwlk 29883   ClWWalksN cclwwlkn 29926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-edg 28951  df-uhgr 28961  df-upgr 28985  df-uspgr 29053  df-wlks 29503  df-clwlks 29674  df-clwwlk 29884  df-clwwlkn 29927
This theorem is referenced by:  clwlkssizeeq  29987  clwwlknonclwlknonf1o  30264
  Copyright terms: Public domain W3C validator