MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 29950
Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st β€˜π‘)
clwlknf1oclwwlkn.b 𝐡 = (2nd β€˜π‘)
clwlknf1oclwwlkn.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐 ∈ 𝐢 ↦ (𝐡 prefix (β™―β€˜π΄)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐢,𝑐   𝐺,𝑐,𝑀   𝑀,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑀,𝑐)   𝐡(𝑀,𝑐)   𝐢(𝑀)   𝐹(𝑀,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
2 2fveq3 6899 . . . . . . . 8 (𝑠 = 𝑀 β†’ (β™―β€˜(1st β€˜π‘ )) = (β™―β€˜(1st β€˜π‘€)))
32breq2d 5160 . . . . . . 7 (𝑠 = 𝑀 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘ )) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘€))))
43cbvrabv 3430 . . . . . 6 {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
5 fveq2 6894 . . . . . . . 8 (𝑑 = 𝑐 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘))
6 2fveq3 6899 . . . . . . . . 9 (𝑑 = 𝑐 β†’ (β™―β€˜(2nd β€˜π‘‘)) = (β™―β€˜(2nd β€˜π‘)))
76oveq1d 7432 . . . . . . . 8 (𝑑 = 𝑐 β†’ ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
85, 7oveq12d 7435 . . . . . . 7 (𝑑 = 𝑐 β†’ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
98cbvmptv 5261 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
104, 9clwlkclwwlkf1o 29877 . . . . 5 (𝐺 ∈ USPGraph β†’ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
1110adantr 479 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
12 2fveq3 6899 . . . . . . . . . 10 (𝑀 = 𝑠 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘ )))
1312breq2d 5160 . . . . . . . . 9 (𝑀 = 𝑠 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘ ))))
1413cbvrabv 3430 . . . . . . . 8 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}
1514mpteq1i 5244 . . . . . . 7 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
16 fveq2 6894 . . . . . . . . 9 (𝑐 = 𝑑 β†’ (2nd β€˜π‘) = (2nd β€˜π‘‘))
17 2fveq3 6899 . . . . . . . . . 10 (𝑐 = 𝑑 β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘‘)))
1817oveq1d 7432 . . . . . . . . 9 (𝑐 = 𝑑 β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))
1916, 18oveq12d 7435 . . . . . . . 8 (𝑐 = 𝑑 β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2019cbvmptv 5261 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2115, 20eqtri 2753 . . . . . 6 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))))
234eqcomi 2734 . . . . . 6 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))})
25 eqidd 2726 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (ClWWalksβ€˜πΊ) = (ClWWalksβ€˜πΊ))
2622, 24, 25f1oeq123d 6830 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ)))
2711, 26mpbird 256 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
28 fveq2 6894 . . . . . 6 (𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) β†’ (β™―β€˜π‘ ) = (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
29283ad2ant3 1132 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜π‘ ) = (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
30 2fveq3 6899 . . . . . . . . 9 (𝑀 = 𝑐 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘)))
3130breq2d 5160 . . . . . . . 8 (𝑀 = 𝑐 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘))))
3231elrab 3680 . . . . . . 7 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))))
33 clwlknf1oclwwlknlem1 29947 . . . . . . 7 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
3432, 33sylbi 216 . . . . . 6 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
35343ad2ant2 1131 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
3629, 35eqtrd 2765 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜π‘ ) = (β™―β€˜(1st β€˜π‘)))
3736eqeq1d 2727 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ ((β™―β€˜π‘ ) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
381, 27, 37f1oresrab 7134 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st β€˜π‘)
40 clwlknf1oclwwlkn.b . . . . 5 𝐡 = (2nd β€˜π‘)
41 clwlknf1oclwwlkn.c . . . . 5 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐 ∈ 𝐢 ↦ (𝐡 prefix (β™―β€˜π΄)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 29949 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹 = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) β†Ύ 𝐢))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ 𝐡 = (2nd β€˜π‘))
45 clwlkwlk 29645 . . . . . . . . . . 11 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ 𝑐 ∈ (Walksβ€˜πΊ))
46 wlkcpr 29499 . . . . . . . . . . . 12 (𝑐 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘))
4739fveq2i 6897 . . . . . . . . . . . . 13 (β™―β€˜π΄) = (β™―β€˜(1st β€˜π‘))
48 wlklenvm1 29492 . . . . . . . . . . . . 13 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(1st β€˜π‘)) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
4947, 48eqtrid 2777 . . . . . . . . . . . 12 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5046, 49sylbi 216 . . . . . . . . . . 11 (𝑐 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5251adantr 479 . . . . . . . . 9 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5332, 52sylbi 216 . . . . . . . 8 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5453adantl 480 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5544, 54oveq12d 7435 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ (𝐡 prefix (β™―β€˜π΄)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
5655mpteq2dva 5248 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
5730eqeq1d 2727 . . . . . . . 8 (𝑀 = 𝑐 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
5857cbvrabv 3430 . . . . . . 7 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}
59 nnge1 12270 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ 1 ≀ 𝑁)
60 breq2 5152 . . . . . . . . . . . 12 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) ↔ 1 ≀ 𝑁))
6159, 60syl5ibrcom 246 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6261adantl 480 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6362adantr 479 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ (ClWalksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6463pm4.71rd 561 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ (ClWalksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ↔ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
6564rabbidva 3426 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
6658, 65eqtrid 2777 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
6732anbi1i 622 . . . . . . . 8 ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁))
68 anass 467 . . . . . . . 8 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
6967, 68bitri 274 . . . . . . 7 ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
7069rabbia2 3422 . . . . . 6 {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)}
7166, 41, 703eqtr4g 2790 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐢 = {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
7256, 71reseq12d 5985 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) β†Ύ 𝐢) = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
7343, 72eqtrd 2765 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹 = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
74 clwlknf1oclwwlknlem2 29948 . . . . 5 (𝑁 ∈ β„• β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
7574adantl 480 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
7675, 41, 703eqtr4g 2790 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐢 = {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
77 clwwlkn 29892 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁})
7973, 76, 78f1oeq123d 6830 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁}))
8038, 79mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {crab 3419   class class class wbr 5148   ↦ cmpt 5231   β†Ύ cres 5679  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991  1c1 11139   ≀ cle 11279   βˆ’ cmin 11474  β„•cn 12242  β™―chash 14321   prefix cpfx 14652  USPGraphcuspgr 29017  Walkscwlks 29466  ClWalkscclwlks 29640  ClWWalkscclwwlk 29847   ClWWalksN cclwwlkn 29890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-edg 28917  df-uhgr 28927  df-upgr 28951  df-uspgr 29019  df-wlks 29469  df-clwlks 29641  df-clwwlk 29848  df-clwwlkn 29891
This theorem is referenced by:  clwlkssizeeq  29951  clwwlknonclwlknonf1o  30228
  Copyright terms: Public domain W3C validator