MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 29337
Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st β€˜π‘)
clwlknf1oclwwlkn.b 𝐡 = (2nd β€˜π‘)
clwlknf1oclwwlkn.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐 ∈ 𝐢 ↦ (𝐡 prefix (β™―β€˜π΄)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐢,𝑐   𝐺,𝑐,𝑀   𝑀,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑀,𝑐)   𝐡(𝑀,𝑐)   𝐢(𝑀)   𝐹(𝑀,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
2 2fveq3 6897 . . . . . . . 8 (𝑠 = 𝑀 β†’ (β™―β€˜(1st β€˜π‘ )) = (β™―β€˜(1st β€˜π‘€)))
32breq2d 5161 . . . . . . 7 (𝑠 = 𝑀 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘ )) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘€))))
43cbvrabv 3443 . . . . . 6 {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
5 fveq2 6892 . . . . . . . 8 (𝑑 = 𝑐 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘))
6 2fveq3 6897 . . . . . . . . 9 (𝑑 = 𝑐 β†’ (β™―β€˜(2nd β€˜π‘‘)) = (β™―β€˜(2nd β€˜π‘)))
76oveq1d 7424 . . . . . . . 8 (𝑑 = 𝑐 β†’ ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
85, 7oveq12d 7427 . . . . . . 7 (𝑑 = 𝑐 β†’ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
98cbvmptv 5262 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
104, 9clwlkclwwlkf1o 29264 . . . . 5 (𝐺 ∈ USPGraph β†’ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
1110adantr 482 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
12 2fveq3 6897 . . . . . . . . . 10 (𝑀 = 𝑠 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘ )))
1312breq2d 5161 . . . . . . . . 9 (𝑀 = 𝑠 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘ ))))
1413cbvrabv 3443 . . . . . . . 8 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}
1514mpteq1i 5245 . . . . . . 7 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
16 fveq2 6892 . . . . . . . . 9 (𝑐 = 𝑑 β†’ (2nd β€˜π‘) = (2nd β€˜π‘‘))
17 2fveq3 6897 . . . . . . . . . 10 (𝑐 = 𝑑 β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘‘)))
1817oveq1d 7424 . . . . . . . . 9 (𝑐 = 𝑑 β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))
1916, 18oveq12d 7427 . . . . . . . 8 (𝑐 = 𝑑 β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2019cbvmptv 5262 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2115, 20eqtri 2761 . . . . . 6 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))))
234eqcomi 2742 . . . . . 6 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))})
25 eqidd 2734 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (ClWWalksβ€˜πΊ) = (ClWWalksβ€˜πΊ))
2622, 24, 25f1oeq123d 6828 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ)))
2711, 26mpbird 257 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
28 fveq2 6892 . . . . . 6 (𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) β†’ (β™―β€˜π‘ ) = (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
29283ad2ant3 1136 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜π‘ ) = (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
30 2fveq3 6897 . . . . . . . . 9 (𝑀 = 𝑐 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘)))
3130breq2d 5161 . . . . . . . 8 (𝑀 = 𝑐 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘))))
3231elrab 3684 . . . . . . 7 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))))
33 clwlknf1oclwwlknlem1 29334 . . . . . . 7 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
3432, 33sylbi 216 . . . . . 6 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
35343ad2ant2 1135 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
3629, 35eqtrd 2773 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜π‘ ) = (β™―β€˜(1st β€˜π‘)))
3736eqeq1d 2735 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ ((β™―β€˜π‘ ) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
381, 27, 37f1oresrab 7125 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st β€˜π‘)
40 clwlknf1oclwwlkn.b . . . . 5 𝐡 = (2nd β€˜π‘)
41 clwlknf1oclwwlkn.c . . . . 5 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐 ∈ 𝐢 ↦ (𝐡 prefix (β™―β€˜π΄)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 29336 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹 = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) β†Ύ 𝐢))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ 𝐡 = (2nd β€˜π‘))
45 clwlkwlk 29032 . . . . . . . . . . 11 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ 𝑐 ∈ (Walksβ€˜πΊ))
46 wlkcpr 28886 . . . . . . . . . . . 12 (𝑐 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘))
4739fveq2i 6895 . . . . . . . . . . . . 13 (β™―β€˜π΄) = (β™―β€˜(1st β€˜π‘))
48 wlklenvm1 28879 . . . . . . . . . . . . 13 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(1st β€˜π‘)) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
4947, 48eqtrid 2785 . . . . . . . . . . . 12 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5046, 49sylbi 216 . . . . . . . . . . 11 (𝑐 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5251adantr 482 . . . . . . . . 9 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5332, 52sylbi 216 . . . . . . . 8 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5453adantl 483 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5544, 54oveq12d 7427 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ (𝐡 prefix (β™―β€˜π΄)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
5655mpteq2dva 5249 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
5730eqeq1d 2735 . . . . . . . 8 (𝑀 = 𝑐 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
5857cbvrabv 3443 . . . . . . 7 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}
59 nnge1 12240 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ 1 ≀ 𝑁)
60 breq2 5153 . . . . . . . . . . . 12 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) ↔ 1 ≀ 𝑁))
6159, 60syl5ibrcom 246 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6261adantl 483 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6362adantr 482 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ (ClWalksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6463pm4.71rd 564 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ (ClWalksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ↔ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
6564rabbidva 3440 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
6658, 65eqtrid 2785 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
6732anbi1i 625 . . . . . . . 8 ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁))
68 anass 470 . . . . . . . 8 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
6967, 68bitri 275 . . . . . . 7 ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
7069rabbia2 3436 . . . . . 6 {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)}
7166, 41, 703eqtr4g 2798 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐢 = {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
7256, 71reseq12d 5983 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) β†Ύ 𝐢) = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
7343, 72eqtrd 2773 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹 = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
74 clwlknf1oclwwlknlem2 29335 . . . . 5 (𝑁 ∈ β„• β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
7574adantl 483 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
7675, 41, 703eqtr4g 2798 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐢 = {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
77 clwwlkn 29279 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁})
7973, 76, 78f1oeq123d 6828 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁}))
8038, 79mpbird 257 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {crab 3433   class class class wbr 5149   ↦ cmpt 5232   β†Ύ cres 5679  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  1c1 11111   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  β™―chash 14290   prefix cpfx 14620  USPGraphcuspgr 28408  Walkscwlks 28853  ClWalkscclwlks 29027  ClWWalkscclwwlk 29234   ClWWalksN cclwwlkn 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-lsw 14513  df-concat 14521  df-s1 14546  df-substr 14591  df-pfx 14621  df-edg 28308  df-uhgr 28318  df-upgr 28342  df-uspgr 28410  df-wlks 28856  df-clwlks 29028  df-clwwlk 29235  df-clwwlkn 29278
This theorem is referenced by:  clwlkssizeeq  29338  clwwlknonclwlknonf1o  29615
  Copyright terms: Public domain W3C validator