Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 27876
 Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st𝑐)
clwlknf1oclwwlkn.b 𝐵 = (2nd𝑐)
clwlknf1oclwwlkn.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐶,𝑐   𝐺,𝑐,𝑤   𝑤,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑤,𝑐)   𝐵(𝑤,𝑐)   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
2 2fveq3 6650 . . . . . . . 8 (𝑠 = 𝑤 → (♯‘(1st𝑠)) = (♯‘(1st𝑤)))
32breq2d 5042 . . . . . . 7 (𝑠 = 𝑤 → (1 ≤ (♯‘(1st𝑠)) ↔ 1 ≤ (♯‘(1st𝑤))))
43cbvrabv 3439 . . . . . 6 {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
5 fveq2 6645 . . . . . . . 8 (𝑑 = 𝑐 → (2nd𝑑) = (2nd𝑐))
6 2fveq3 6650 . . . . . . . . 9 (𝑑 = 𝑐 → (♯‘(2nd𝑑)) = (♯‘(2nd𝑐)))
76oveq1d 7150 . . . . . . . 8 (𝑑 = 𝑐 → ((♯‘(2nd𝑑)) − 1) = ((♯‘(2nd𝑐)) − 1))
85, 7oveq12d 7153 . . . . . . 7 (𝑑 = 𝑐 → ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
98cbvmptv 5133 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
104, 9clwlkclwwlkf1o 27803 . . . . 5 (𝐺 ∈ USPGraph → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
1110adantr 484 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
12 2fveq3 6650 . . . . . . . . . 10 (𝑤 = 𝑠 → (♯‘(1st𝑤)) = (♯‘(1st𝑠)))
1312breq2d 5042 . . . . . . . . 9 (𝑤 = 𝑠 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑠))))
1413cbvrabv 3439 . . . . . . . 8 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
1514mpteq1i 5120 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
16 fveq2 6645 . . . . . . . . 9 (𝑐 = 𝑑 → (2nd𝑐) = (2nd𝑑))
17 2fveq3 6650 . . . . . . . . . 10 (𝑐 = 𝑑 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑑)))
1817oveq1d 7150 . . . . . . . . 9 (𝑐 = 𝑑 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑑)) − 1))
1916, 18oveq12d 7153 . . . . . . . 8 (𝑐 = 𝑑 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2019cbvmptv 5133 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2115, 20eqtri 2821 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))))
234eqcomi 2807 . . . . . 6 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))})
25 eqidd 2799 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (ClWWalks‘𝐺) = (ClWWalks‘𝐺))
2622, 24, 25f1oeq123d 6585 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺)))
2711, 26mpbird 260 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺))
28 fveq2 6645 . . . . . 6 (𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
29283ad2ant3 1132 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
30 2fveq3 6650 . . . . . . . . 9 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
3130breq2d 5042 . . . . . . . 8 (𝑤 = 𝑐 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑐))))
3231elrab 3628 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))))
33 clwlknf1oclwwlknlem1 27873 . . . . . . 7 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3432, 33sylbi 220 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
35343ad2ant2 1131 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3629, 35eqtrd 2833 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘(1st𝑐)))
3736eqeq1d 2800 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → ((♯‘𝑠) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
381, 27, 37f1oresrab 6866 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st𝑐)
40 clwlknf1oclwwlkn.b . . . . 5 𝐵 = (2nd𝑐)
41 clwlknf1oclwwlkn.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 27875 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → 𝐵 = (2nd𝑐))
45 clwlkwlk 27571 . . . . . . . . . . 11 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
46 wlkcpr 27425 . . . . . . . . . . . 12 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4739fveq2i 6648 . . . . . . . . . . . . 13 (♯‘𝐴) = (♯‘(1st𝑐))
48 wlklenvm1 27418 . . . . . . . . . . . . 13 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(1st𝑐)) = ((♯‘(2nd𝑐)) − 1))
4947, 48syl5eq 2845 . . . . . . . . . . . 12 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5046, 49sylbi 220 . . . . . . . . . . 11 (𝑐 ∈ (Walks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5251adantr 484 . . . . . . . . 9 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5332, 52sylbi 220 . . . . . . . 8 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5453adantl 485 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5544, 54oveq12d 7153 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (𝐵 prefix (♯‘𝐴)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
5655mpteq2dva 5125 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
5730eqeq1d 2800 . . . . . . . 8 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
5857cbvrabv 3439 . . . . . . 7 {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}
59 nnge1 11655 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
60 breq2 5034 . . . . . . . . . . . 12 ((♯‘(1st𝑐)) = 𝑁 → (1 ≤ (♯‘(1st𝑐)) ↔ 1 ≤ 𝑁))
6159, 60syl5ibrcom 250 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6261adantl 485 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6362adantr 484 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6463pm4.71rd 566 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 ↔ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6564rabbidva 3425 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6658, 65syl5eq 2845 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6732anbi1i 626 . . . . . . . 8 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁))
68 anass 472 . . . . . . . 8 (((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6967, 68bitri 278 . . . . . . 7 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
7069rabbia2 3424 . . . . . 6 {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)}
7166, 41, 703eqtr4g 2858 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
7256, 71reseq12d 5819 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶) = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
7343, 72eqtrd 2833 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
74 clwlknf1oclwwlknlem2 27874 . . . . 5 (𝑁 ∈ ℕ → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7574adantl 485 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7675, 41, 703eqtr4g 2858 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
77 clwwlkn 27818 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
7973, 76, 78f1oeq123d 6585 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}))
8038, 79mpbird 260 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3110   class class class wbr 5030   ↦ cmpt 5110   ↾ cres 5521  –1-1-onto→wf1o 6323  ‘cfv 6324  (class class class)co 7135  1st c1st 7671  2nd c2nd 7672  1c1 10529   ≤ cle 10667   − cmin 10861  ℕcn 11627  ♯chash 13688   prefix cpfx 14025  USPGraphcuspgr 26948  Walkscwlks 27393  ClWalkscclwlks 27566  ClWWalkscclwwlk 27773   ClWWalksN cclwwlkn 27816 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-dju 9316  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-n0 11888  df-xnn0 11958  df-z 11972  df-uz 12234  df-rp 12380  df-fz 12888  df-fzo 13031  df-hash 13689  df-word 13860  df-lsw 13908  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-edg 26848  df-uhgr 26858  df-upgr 26882  df-uspgr 26950  df-wlks 27396  df-clwlks 27567  df-clwwlk 27774  df-clwwlkn 27817 This theorem is referenced by:  clwlkssizeeq  27877  clwwlknonclwlknonf1o  28154
 Copyright terms: Public domain W3C validator