MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 29326
Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st β€˜π‘)
clwlknf1oclwwlkn.b 𝐡 = (2nd β€˜π‘)
clwlknf1oclwwlkn.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐 ∈ 𝐢 ↦ (𝐡 prefix (β™―β€˜π΄)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐢,𝑐   𝐺,𝑐,𝑀   𝑀,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑀,𝑐)   𝐡(𝑀,𝑐)   𝐢(𝑀)   𝐹(𝑀,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
2 2fveq3 6893 . . . . . . . 8 (𝑠 = 𝑀 β†’ (β™―β€˜(1st β€˜π‘ )) = (β™―β€˜(1st β€˜π‘€)))
32breq2d 5159 . . . . . . 7 (𝑠 = 𝑀 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘ )) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘€))))
43cbvrabv 3442 . . . . . 6 {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}
5 fveq2 6888 . . . . . . . 8 (𝑑 = 𝑐 β†’ (2nd β€˜π‘‘) = (2nd β€˜π‘))
6 2fveq3 6893 . . . . . . . . 9 (𝑑 = 𝑐 β†’ (β™―β€˜(2nd β€˜π‘‘)) = (β™―β€˜(2nd β€˜π‘)))
76oveq1d 7420 . . . . . . . 8 (𝑑 = 𝑐 β†’ ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
85, 7oveq12d 7423 . . . . . . 7 (𝑑 = 𝑐 β†’ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
98cbvmptv 5260 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
104, 9clwlkclwwlkf1o 29253 . . . . 5 (𝐺 ∈ USPGraph β†’ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
1110adantr 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
12 2fveq3 6893 . . . . . . . . . 10 (𝑀 = 𝑠 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘ )))
1312breq2d 5159 . . . . . . . . 9 (𝑀 = 𝑠 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘ ))))
1413cbvrabv 3442 . . . . . . . 8 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}
1514mpteq1i 5243 . . . . . . 7 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
16 fveq2 6888 . . . . . . . . 9 (𝑐 = 𝑑 β†’ (2nd β€˜π‘) = (2nd β€˜π‘‘))
17 2fveq3 6893 . . . . . . . . . 10 (𝑐 = 𝑑 β†’ (β™―β€˜(2nd β€˜π‘)) = (β™―β€˜(2nd β€˜π‘‘)))
1817oveq1d 7420 . . . . . . . . 9 (𝑐 = 𝑑 β†’ ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1) = ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))
1916, 18oveq12d 7423 . . . . . . . 8 (𝑐 = 𝑑 β†’ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) = ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2019cbvmptv 5260 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2115, 20eqtri 2760 . . . . . 6 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))))
234eqcomi 2741 . . . . . 6 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} = {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))})
25 eqidd 2733 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (ClWWalksβ€˜πΊ) = (ClWWalksβ€˜πΊ))
2622, 24, 25f1oeq123d 6824 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))} ↦ ((2nd β€˜π‘‘) prefix ((β™―β€˜(2nd β€˜π‘‘)) βˆ’ 1))):{𝑠 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘ ))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ)))
2711, 26mpbird 256 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))):{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}–1-1-ontoβ†’(ClWWalksβ€˜πΊ))
28 fveq2 6888 . . . . . 6 (𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)) β†’ (β™―β€˜π‘ ) = (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
29283ad2ant3 1135 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜π‘ ) = (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
30 2fveq3 6893 . . . . . . . . 9 (𝑀 = 𝑐 β†’ (β™―β€˜(1st β€˜π‘€)) = (β™―β€˜(1st β€˜π‘)))
3130breq2d 5159 . . . . . . . 8 (𝑀 = 𝑐 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘€)) ↔ 1 ≀ (β™―β€˜(1st β€˜π‘))))
3231elrab 3682 . . . . . . 7 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))))
33 clwlknf1oclwwlknlem1 29323 . . . . . . 7 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
3432, 33sylbi 216 . . . . . 6 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
35343ad2ant2 1134 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) = (β™―β€˜(1st β€˜π‘)))
3629, 35eqtrd 2772 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ (β™―β€˜π‘ ) = (β™―β€˜(1st β€˜π‘)))
3736eqeq1d 2734 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ 𝑠 = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†’ ((β™―β€˜π‘ ) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
381, 27, 37f1oresrab 7121 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st β€˜π‘)
40 clwlknf1oclwwlkn.b . . . . 5 𝐡 = (2nd β€˜π‘)
41 clwlknf1oclwwlkn.c . . . . 5 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐 ∈ 𝐢 ↦ (𝐡 prefix (β™―β€˜π΄)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 29325 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹 = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) β†Ύ 𝐢))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ 𝐡 = (2nd β€˜π‘))
45 clwlkwlk 29021 . . . . . . . . . . 11 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ 𝑐 ∈ (Walksβ€˜πΊ))
46 wlkcpr 28875 . . . . . . . . . . . 12 (𝑐 ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘))
4739fveq2i 6891 . . . . . . . . . . . . 13 (β™―β€˜π΄) = (β™―β€˜(1st β€˜π‘))
48 wlklenvm1 28868 . . . . . . . . . . . . 13 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜(1st β€˜π‘)) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
4947, 48eqtrid 2784 . . . . . . . . . . . 12 ((1st β€˜π‘)(Walksβ€˜πΊ)(2nd β€˜π‘) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5046, 49sylbi 216 . . . . . . . . . . 11 (𝑐 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalksβ€˜πΊ) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5251adantr 481 . . . . . . . . 9 ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5332, 52sylbi 216 . . . . . . . 8 (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5453adantl 482 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ (β™―β€˜π΄) = ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))
5544, 54oveq12d 7423 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))}) β†’ (𝐡 prefix (β™―β€˜π΄)) = ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1)))
5655mpteq2dva 5247 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) = (𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))))
5730eqeq1d 2734 . . . . . . . 8 (𝑀 = 𝑐 β†’ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘)) = 𝑁))
5857cbvrabv 3442 . . . . . . 7 {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}
59 nnge1 12236 . . . . . . . . . . . 12 (𝑁 ∈ β„• β†’ 1 ≀ 𝑁)
60 breq2 5151 . . . . . . . . . . . 12 ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ (1 ≀ (β™―β€˜(1st β€˜π‘)) ↔ 1 ≀ 𝑁))
6159, 60syl5ibrcom 246 . . . . . . . . . . 11 (𝑁 ∈ β„• β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6261adantl 482 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6362adantr 481 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ (ClWalksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 β†’ 1 ≀ (β™―β€˜(1st β€˜π‘))))
6463pm4.71rd 563 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) ∧ 𝑐 ∈ (ClWalksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ↔ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
6564rabbidva 3439 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
6658, 65eqtrid 2784 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
6732anbi1i 624 . . . . . . . 8 ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ ((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁))
68 anass 469 . . . . . . . 8 (((𝑐 ∈ (ClWalksβ€˜πΊ) ∧ 1 ≀ (β™―β€˜(1st β€˜π‘))) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
6967, 68bitri 274 . . . . . . 7 ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁) ↔ (𝑐 ∈ (ClWalksβ€˜πΊ) ∧ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)))
7069rabbia2 3435 . . . . . 6 {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)}
7166, 41, 703eqtr4g 2797 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐢 = {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
7256, 71reseq12d 5980 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ (𝐡 prefix (β™―β€˜π΄))) β†Ύ 𝐢) = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
7343, 72eqtrd 2772 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹 = ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}))
74 clwlknf1oclwwlknlem2 29324 . . . . 5 (𝑁 ∈ β„• β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
7574adantl 482 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} = {𝑐 ∈ (ClWalksβ€˜πΊ) ∣ (1 ≀ (β™―β€˜(1st β€˜π‘)) ∧ (β™―β€˜(1st β€˜π‘)) = 𝑁)})
7675, 41, 703eqtr4g 2797 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐢 = {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁})
77 clwwlkn 29268 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁})
7973, 76, 78f1oeq123d 6824 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ (𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ↦ ((2nd β€˜π‘) prefix ((β™―β€˜(2nd β€˜π‘)) βˆ’ 1))) β†Ύ {𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}):{𝑐 ∈ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ 1 ≀ (β™―β€˜(1st β€˜π‘€))} ∣ (β™―β€˜(1st β€˜π‘)) = 𝑁}–1-1-ontoβ†’{𝑠 ∈ (ClWWalksβ€˜πΊ) ∣ (β™―β€˜π‘ ) = 𝑁}))
8038, 79mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•) β†’ 𝐹:𝐢–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432   class class class wbr 5147   ↦ cmpt 5230   β†Ύ cres 5677  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  1c1 11107   ≀ cle 11245   βˆ’ cmin 11440  β„•cn 12208  β™―chash 14286   prefix cpfx 14616  USPGraphcuspgr 28397  Walkscwlks 28842  ClWalkscclwlks 29016  ClWWalkscclwwlk 29223   ClWWalksN cclwwlkn 29266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-uspgr 28399  df-wlks 28845  df-clwlks 29017  df-clwwlk 29224  df-clwwlkn 29267
This theorem is referenced by:  clwlkssizeeq  29327  clwwlknonclwlknonf1o  29604
  Copyright terms: Public domain W3C validator