MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlkn Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlkn 30116
Description: There is a one-to-one onto function between the set of closed walks as words of length 𝑁 and the set of closed walks of length 𝑁 in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
clwlknf1oclwwlkn.a 𝐴 = (1st𝑐)
clwlknf1oclwwlkn.b 𝐵 = (2nd𝑐)
clwlknf1oclwwlkn.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
clwlknf1oclwwlkn.f 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
Assertion
Ref Expression
clwlknf1oclwwlkn ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝐶,𝑐   𝐺,𝑐,𝑤   𝑤,𝑁,𝑐
Allowed substitution hints:   𝐴(𝑤,𝑐)   𝐵(𝑤,𝑐)   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlknf1oclwwlkn
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
2 2fveq3 6925 . . . . . . . 8 (𝑠 = 𝑤 → (♯‘(1st𝑠)) = (♯‘(1st𝑤)))
32breq2d 5178 . . . . . . 7 (𝑠 = 𝑤 → (1 ≤ (♯‘(1st𝑠)) ↔ 1 ≤ (♯‘(1st𝑤))))
43cbvrabv 3454 . . . . . 6 {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
5 fveq2 6920 . . . . . . . 8 (𝑑 = 𝑐 → (2nd𝑑) = (2nd𝑐))
6 2fveq3 6925 . . . . . . . . 9 (𝑑 = 𝑐 → (♯‘(2nd𝑑)) = (♯‘(2nd𝑐)))
76oveq1d 7463 . . . . . . . 8 (𝑑 = 𝑐 → ((♯‘(2nd𝑑)) − 1) = ((♯‘(2nd𝑐)) − 1))
85, 7oveq12d 7466 . . . . . . 7 (𝑑 = 𝑐 → ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
98cbvmptv 5279 . . . . . 6 (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
104, 9clwlkclwwlkf1o 30043 . . . . 5 (𝐺 ∈ USPGraph → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
1110adantr 480 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺))
12 2fveq3 6925 . . . . . . . . . 10 (𝑤 = 𝑠 → (♯‘(1st𝑤)) = (♯‘(1st𝑠)))
1312breq2d 5178 . . . . . . . . 9 (𝑤 = 𝑠 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑠))))
1413cbvrabv 3454 . . . . . . . 8 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
1514mpteq1i 5262 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
16 fveq2 6920 . . . . . . . . 9 (𝑐 = 𝑑 → (2nd𝑐) = (2nd𝑑))
17 2fveq3 6925 . . . . . . . . . 10 (𝑐 = 𝑑 → (♯‘(2nd𝑐)) = (♯‘(2nd𝑑)))
1817oveq1d 7463 . . . . . . . . 9 (𝑐 = 𝑑 → ((♯‘(2nd𝑐)) − 1) = ((♯‘(2nd𝑑)) − 1))
1916, 18oveq12d 7466 . . . . . . . 8 (𝑐 = 𝑑 → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) = ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2019cbvmptv 5279 . . . . . . 7 (𝑐 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2115, 20eqtri 2768 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1)))
2221a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))))
234eqcomi 2749 . . . . . 6 {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}
2423a1i 11 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} = {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))})
25 eqidd 2741 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (ClWWalks‘𝐺) = (ClWWalks‘𝐺))
2622, 24, 25f1oeq123d 6856 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺) ↔ (𝑑 ∈ {𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))} ↦ ((2nd𝑑) prefix ((♯‘(2nd𝑑)) − 1))):{𝑠 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑠))}–1-1-onto→(ClWWalks‘𝐺)))
2711, 26mpbird 257 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))):{𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}–1-1-onto→(ClWWalks‘𝐺))
28 fveq2 6920 . . . . . 6 (𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
29283ad2ant3 1135 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
30 2fveq3 6925 . . . . . . . . 9 (𝑤 = 𝑐 → (♯‘(1st𝑤)) = (♯‘(1st𝑐)))
3130breq2d 5178 . . . . . . . 8 (𝑤 = 𝑐 → (1 ≤ (♯‘(1st𝑤)) ↔ 1 ≤ (♯‘(1st𝑐))))
3231elrab 3708 . . . . . . 7 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))))
33 clwlknf1oclwwlknlem1 30113 . . . . . . 7 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3432, 33sylbi 217 . . . . . 6 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
35343ad2ant2 1134 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) = (♯‘(1st𝑐)))
3629, 35eqtrd 2780 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → (♯‘𝑠) = (♯‘(1st𝑐)))
3736eqeq1d 2742 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ 𝑠 = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) → ((♯‘𝑠) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
381, 27, 37f1oresrab 7161 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
39 clwlknf1oclwwlkn.a . . . . 5 𝐴 = (1st𝑐)
40 clwlknf1oclwwlkn.b . . . . 5 𝐵 = (2nd𝑐)
41 clwlknf1oclwwlkn.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁}
42 clwlknf1oclwwlkn.f . . . . 5 𝐹 = (𝑐𝐶 ↦ (𝐵 prefix (♯‘𝐴)))
4339, 40, 41, 42clwlknf1oclwwlknlem3 30115 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶))
4440a1i 11 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → 𝐵 = (2nd𝑐))
45 clwlkwlk 29811 . . . . . . . . . . 11 (𝑐 ∈ (ClWalks‘𝐺) → 𝑐 ∈ (Walks‘𝐺))
46 wlkcpr 29665 . . . . . . . . . . . 12 (𝑐 ∈ (Walks‘𝐺) ↔ (1st𝑐)(Walks‘𝐺)(2nd𝑐))
4739fveq2i 6923 . . . . . . . . . . . . 13 (♯‘𝐴) = (♯‘(1st𝑐))
48 wlklenvm1 29658 . . . . . . . . . . . . 13 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(1st𝑐)) = ((♯‘(2nd𝑐)) − 1))
4947, 48eqtrid 2792 . . . . . . . . . . . 12 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5046, 49sylbi 217 . . . . . . . . . . 11 (𝑐 ∈ (Walks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5145, 50syl 17 . . . . . . . . . 10 (𝑐 ∈ (ClWalks‘𝐺) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5251adantr 480 . . . . . . . . 9 ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5332, 52sylbi 217 . . . . . . . 8 (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5453adantl 481 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (♯‘𝐴) = ((♯‘(2nd𝑐)) − 1))
5544, 54oveq12d 7466 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}) → (𝐵 prefix (♯‘𝐴)) = ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
5655mpteq2dva 5266 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) = (𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))))
5730eqeq1d 2742 . . . . . . . 8 (𝑤 = 𝑐 → ((♯‘(1st𝑤)) = 𝑁 ↔ (♯‘(1st𝑐)) = 𝑁))
5857cbvrabv 3454 . . . . . . 7 {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁}
59 nnge1 12321 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
60 breq2 5170 . . . . . . . . . . . 12 ((♯‘(1st𝑐)) = 𝑁 → (1 ≤ (♯‘(1st𝑐)) ↔ 1 ≤ 𝑁))
6159, 60syl5ibrcom 247 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6261adantl 481 . . . . . . . . . 10 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6362adantr 480 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 → 1 ≤ (♯‘(1st𝑐))))
6463pm4.71rd 562 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑐 ∈ (ClWalks‘𝐺)) → ((♯‘(1st𝑐)) = 𝑁 ↔ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6564rabbidva 3450 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6658, 65eqtrid 2792 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
6732anbi1i 623 . . . . . . . 8 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ ((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁))
68 anass 468 . . . . . . . 8 (((𝑐 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
6967, 68bitri 275 . . . . . . 7 ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∧ (♯‘(1st𝑐)) = 𝑁) ↔ (𝑐 ∈ (ClWalks‘𝐺) ∧ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)))
7069rabbia2 3446 . . . . . 6 {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)}
7166, 41, 703eqtr4g 2805 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
7256, 71reseq12d 6010 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ (𝐵 prefix (♯‘𝐴))) ↾ 𝐶) = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
7343, 72eqtrd 2780 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹 = ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}))
74 clwlknf1oclwwlknlem2 30114 . . . . 5 (𝑁 ∈ ℕ → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7574adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} = {𝑐 ∈ (ClWalks‘𝐺) ∣ (1 ≤ (♯‘(1st𝑐)) ∧ (♯‘(1st𝑐)) = 𝑁)})
7675, 41, 703eqtr4g 2805 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐶 = {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁})
77 clwwlkn 30058 . . . 4 (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}
7877a1i 11 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = {𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁})
7973, 76, 78f1oeq123d 6856 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → (𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺) ↔ ((𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1))) ↾ {𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}):{𝑐 ∈ {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))} ∣ (♯‘(1st𝑐)) = 𝑁}–1-1-onto→{𝑠 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑠) = 𝑁}))
8038, 79mpbird 257 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ) → 𝐹:𝐶1-1-onto→(𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cmpt 5249  cres 5702  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  1c1 11185  cle 11325  cmin 11520  cn 12293  chash 14379   prefix cpfx 14718  USPGraphcuspgr 29183  Walkscwlks 29632  ClWalkscclwlks 29806  ClWWalkscclwwlk 30013   ClWWalksN cclwwlkn 30056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-uspgr 29185  df-wlks 29635  df-clwlks 29807  df-clwwlk 30014  df-clwwlkn 30057
This theorem is referenced by:  clwlkssizeeq  30117  clwwlknonclwlknonf1o  30394
  Copyright terms: Public domain W3C validator