Proof of Theorem f1ossf1o
| Step | Hyp | Ref
| Expression |
| 1 | | f1ossf1o.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵) |
| 2 | | f1ossf1o.b |
. . 3
⊢ (𝜑 → 𝐺:𝑌–1-1-onto→𝐶) |
| 3 | | f1ossf1o.s |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵) → (𝜏 ↔ [𝑥 / 𝑤]𝜒)) |
| 4 | 1, 2, 3 | f1oresrab 7147 |
. 2
⊢ (𝜑 → (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}):{𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) |
| 5 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜓 ∧ 𝜒) → 𝜓) |
| 6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝐴 → ((𝜓 ∧ 𝜒) → 𝜓)) |
| 7 | 6 | ss2rabi 4077 |
. . . . . . 7
⊢ {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} ⊆ {𝑤 ∈ 𝐴 ∣ 𝜓} |
| 8 | | f1ossf1o.x |
. . . . . . 7
⊢ 𝑋 = {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} |
| 9 | | f1ossf1o.y |
. . . . . . 7
⊢ 𝑌 = {𝑤 ∈ 𝐴 ∣ 𝜓} |
| 10 | 7, 8, 9 | 3sstr4i 4035 |
. . . . . 6
⊢ 𝑋 ⊆ 𝑌 |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| 12 | 11 | resmptd 6058 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑌 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 13 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
| 14 | 9 | rabeqi 3450 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} = {𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∣ [𝑥 / 𝑤]𝜒} |
| 15 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤𝑥 |
| 16 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤𝐴 |
| 17 | | nfs1v 2156 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤[𝑥 / 𝑤]𝜓 |
| 18 | | sbequ12 2251 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝜓 ↔ [𝑥 / 𝑤]𝜓)) |
| 19 | 15, 16, 17, 18 | elrabf 3688 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ [𝑥 / 𝑤]𝜓)) |
| 20 | 19 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∧ [𝑥 / 𝑤]𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ [𝑥 / 𝑤]𝜓) ∧ [𝑥 / 𝑤]𝜒)) |
| 21 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ [𝑥 / 𝑤]𝜓) ∧ [𝑥 / 𝑤]𝜒) ↔ (𝑥 ∈ 𝐴 ∧ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒))) |
| 22 | 20, 21 | bitri 275 |
. . . . . . . 8
⊢ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∧ [𝑥 / 𝑤]𝜒) ↔ (𝑥 ∈ 𝐴 ∧ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒))) |
| 23 | 22 | rabbia2 3439 |
. . . . . . 7
⊢ {𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∣ [𝑥 / 𝑤]𝜒} = {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} |
| 24 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐴 |
| 25 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜓 ∧ 𝜒) |
| 26 | | nfs1v 2156 |
. . . . . . . . . 10
⊢
Ⅎ𝑤[𝑥 / 𝑤]𝜒 |
| 27 | 17, 26 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑤([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒) |
| 28 | | sbequ12 2251 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝜒 ↔ [𝑥 / 𝑤]𝜒)) |
| 29 | 18, 28 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → ((𝜓 ∧ 𝜒) ↔ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒))) |
| 30 | 16, 24, 25, 27, 29 | cbvrabw 3473 |
. . . . . . . 8
⊢ {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} = {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} |
| 31 | 8, 30 | eqtr2i 2766 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} = 𝑋 |
| 32 | 14, 23, 31 | 3eqtri 2769 |
. . . . . 6
⊢ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} = 𝑋 |
| 33 | 32 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} = 𝑋) |
| 34 | 13, 33 | reseq12d 5998 |
. . . 4
⊢ (𝜑 → (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}) = ((𝑥 ∈ 𝑌 ↦ 𝐵) ↾ 𝑋)) |
| 35 | | f1ossf1o.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵) |
| 36 | 35 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 37 | 12, 34, 36 | 3eqtr4rd 2788 |
. . 3
⊢ (𝜑 → 𝐹 = (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒})) |
| 38 | 14, 23 | eqtr2i 2766 |
. . . . 5
⊢ {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} = {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} |
| 39 | 8, 30, 38 | 3eqtri 2769 |
. . . 4
⊢ 𝑋 = {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} |
| 40 | 39 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑋 = {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}) |
| 41 | | eqidd 2738 |
. . 3
⊢ (𝜑 → {𝑦 ∈ 𝐶 ∣ 𝜏} = {𝑦 ∈ 𝐶 ∣ 𝜏}) |
| 42 | 37, 40, 41 | f1oeq123d 6842 |
. 2
⊢ (𝜑 → (𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏} ↔ (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}):{𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏})) |
| 43 | 4, 42 | mpbird 257 |
1
⊢ (𝜑 → 𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) |