Proof of Theorem f1ossf1o
Step | Hyp | Ref
| Expression |
1 | | f1ossf1o.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵) |
2 | | f1ossf1o.b |
. . 3
⊢ (𝜑 → 𝐺:𝑌–1-1-onto→𝐶) |
3 | | f1ossf1o.s |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 = 𝐵) → (𝜏 ↔ [𝑥 / 𝑤]𝜒)) |
4 | 1, 2, 3 | f1oresrab 6981 |
. 2
⊢ (𝜑 → (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}):{𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) |
5 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜓 ∧ 𝜒) → 𝜓) |
6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝐴 → ((𝜓 ∧ 𝜒) → 𝜓)) |
7 | 6 | ss2rabi 4006 |
. . . . . . 7
⊢ {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} ⊆ {𝑤 ∈ 𝐴 ∣ 𝜓} |
8 | | f1ossf1o.x |
. . . . . . 7
⊢ 𝑋 = {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} |
9 | | f1ossf1o.y |
. . . . . . 7
⊢ 𝑌 = {𝑤 ∈ 𝐴 ∣ 𝜓} |
10 | 7, 8, 9 | 3sstr4i 3960 |
. . . . . 6
⊢ 𝑋 ⊆ 𝑌 |
11 | 10 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
12 | 11 | resmptd 5937 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑌 ↦ 𝐵) ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
13 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝑌 ↦ 𝐵)) |
14 | 9 | rabeqi 3406 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} = {𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∣ [𝑥 / 𝑤]𝜒} |
15 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤𝑥 |
16 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤𝐴 |
17 | | nfs1v 2155 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤[𝑥 / 𝑤]𝜓 |
18 | | sbequ12 2247 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → (𝜓 ↔ [𝑥 / 𝑤]𝜓)) |
19 | 15, 16, 17, 18 | elrabf 3613 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ [𝑥 / 𝑤]𝜓)) |
20 | 19 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∧ [𝑥 / 𝑤]𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ [𝑥 / 𝑤]𝜓) ∧ [𝑥 / 𝑤]𝜒)) |
21 | | anass 468 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ [𝑥 / 𝑤]𝜓) ∧ [𝑥 / 𝑤]𝜒) ↔ (𝑥 ∈ 𝐴 ∧ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒))) |
22 | 20, 21 | bitri 274 |
. . . . . . . 8
⊢ ((𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∧ [𝑥 / 𝑤]𝜒) ↔ (𝑥 ∈ 𝐴 ∧ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒))) |
23 | 22 | rabbia2 3401 |
. . . . . . 7
⊢ {𝑥 ∈ {𝑤 ∈ 𝐴 ∣ 𝜓} ∣ [𝑥 / 𝑤]𝜒} = {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} |
24 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐴 |
25 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜓 ∧ 𝜒) |
26 | | nfs1v 2155 |
. . . . . . . . . 10
⊢
Ⅎ𝑤[𝑥 / 𝑤]𝜒 |
27 | 17, 26 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑤([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒) |
28 | | sbequ12 2247 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝜒 ↔ [𝑥 / 𝑤]𝜒)) |
29 | 18, 28 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → ((𝜓 ∧ 𝜒) ↔ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒))) |
30 | 16, 24, 25, 27, 29 | cbvrabw 3414 |
. . . . . . . 8
⊢ {𝑤 ∈ 𝐴 ∣ (𝜓 ∧ 𝜒)} = {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} |
31 | 8, 30 | eqtr2i 2767 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} = 𝑋 |
32 | 14, 23, 31 | 3eqtri 2770 |
. . . . . 6
⊢ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} = 𝑋 |
33 | 32 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} = 𝑋) |
34 | 13, 33 | reseq12d 5881 |
. . . 4
⊢ (𝜑 → (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}) = ((𝑥 ∈ 𝑌 ↦ 𝐵) ↾ 𝑋)) |
35 | | f1ossf1o.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵) |
36 | 35 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
37 | 12, 34, 36 | 3eqtr4rd 2789 |
. . 3
⊢ (𝜑 → 𝐹 = (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒})) |
38 | 14, 23 | eqtr2i 2767 |
. . . . 5
⊢ {𝑥 ∈ 𝐴 ∣ ([𝑥 / 𝑤]𝜓 ∧ [𝑥 / 𝑤]𝜒)} = {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} |
39 | 8, 30, 38 | 3eqtri 2770 |
. . . 4
⊢ 𝑋 = {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒} |
40 | 39 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑋 = {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}) |
41 | | eqidd 2739 |
. . 3
⊢ (𝜑 → {𝑦 ∈ 𝐶 ∣ 𝜏} = {𝑦 ∈ 𝐶 ∣ 𝜏}) |
42 | 37, 40, 41 | f1oeq123d 6694 |
. 2
⊢ (𝜑 → (𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏} ↔ (𝐺 ↾ {𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}):{𝑥 ∈ 𝑌 ∣ [𝑥 / 𝑤]𝜒}–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏})) |
43 | 4, 42 | mpbird 256 |
1
⊢ (𝜑 → 𝐹:𝑋–1-1-onto→{𝑦 ∈ 𝐶 ∣ 𝜏}) |