Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknon2x | Structured version Visualization version GIF version |
Description: The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon2x | ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon2.c | . . 3 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
2 | 1 | clwwlknon2 28198 | . 2 ⊢ (𝑋𝐶2) = {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
3 | clwwlkn2 28140 | . . . . 5 ⊢ (𝑤 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) | |
4 | 3 | anbi1i 627 | . . . 4 ⊢ ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) |
5 | 3anan12 1098 | . . . . . 6 ⊢ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))) | |
6 | 5 | anbi1i 627 | . . . . 5 ⊢ ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋)) |
7 | anass 472 | . . . . . 6 ⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))) | |
8 | clwwlknon2x.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
9 | 8 | eqcomi 2747 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = 𝑉 |
10 | 9 | wrdeqi 14105 | . . . . . . . 8 ⊢ Word (Vtx‘𝐺) = Word 𝑉 |
11 | 10 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉) |
12 | df-3an 1091 | . . . . . . . 8 ⊢ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋)) | |
13 | clwwlknon2x.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
14 | 13 | eleq2i 2830 | . . . . . . . . . 10 ⊢ ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) |
15 | 14 | anbi2i 626 | . . . . . . . . 9 ⊢ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) |
16 | 15 | anbi1i 627 | . . . . . . . 8 ⊢ ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) |
17 | 12, 16 | bitr2i 279 | . . . . . . 7 ⊢ ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)) |
18 | 11, 17 | anbi12i 630 | . . . . . 6 ⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
19 | 7, 18 | bitri 278 | . . . . 5 ⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
20 | 6, 19 | bitri 278 | . . . 4 ⊢ ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
21 | 4, 20 | bitri 278 | . . 3 ⊢ ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
22 | 21 | rabbia2 3394 | . 2 ⊢ {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
23 | 2, 22 | eqtri 2766 | 1 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 {crab 3066 {cpr 4552 ‘cfv 6389 (class class class)co 7222 0cc0 10742 1c1 10743 2c2 11898 ♯chash 13909 Word cword 14082 Vtxcvtx 27100 Edgcedg 27151 ClWWalksN cclwwlkn 28120 ClWWalksNOncclwwlknon 28183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-oadd 8215 df-er 8400 df-map 8519 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-card 9568 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-n0 12104 df-xnn0 12176 df-z 12190 df-uz 12452 df-fz 13109 df-fzo 13252 df-hash 13910 df-word 14083 df-lsw 14131 df-clwwlk 28078 df-clwwlkn 28121 df-clwwlknon 28184 |
This theorem is referenced by: s2elclwwlknon2 28200 clwwlknon2num 28201 |
Copyright terms: Public domain | W3C validator |