Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon2x Structured version   Visualization version   GIF version

Theorem clwwlknon2x 27796
 Description: The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon2.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon2x.v 𝑉 = (Vtx‘𝐺)
clwwlknon2x.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon2x (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)}
Distinct variable groups:   𝑤,𝐺   𝑤,𝑋
Allowed substitution hints:   𝐶(𝑤)   𝐸(𝑤)   𝑉(𝑤)

Proof of Theorem clwwlknon2x
StepHypRef Expression
1 clwwlknon2.c . . 3 𝐶 = (ClWWalksNOn‘𝐺)
21clwwlknon2 27795 . 2 (𝑋𝐶2) = {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
3 clwwlkn2 27736 . . . . 5 (𝑤 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
43anbi1i 623 . . . 4 ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
5 3anan12 1090 . . . . . 6 (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
65anbi1i 623 . . . . 5 ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋))
7 anass 469 . . . . . 6 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)))
8 clwwlknon2x.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
98eqcomi 2835 . . . . . . . . 9 (Vtx‘𝐺) = 𝑉
109wrdeqi 13877 . . . . . . . 8 Word (Vtx‘𝐺) = Word 𝑉
1110eleq2i 2909 . . . . . . 7 (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉)
12 df-3an 1083 . . . . . . . 8 (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋))
13 clwwlknon2x.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
1413eleq2i 2909 . . . . . . . . . 10 ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
1514anbi2i 622 . . . . . . . . 9 (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
1615anbi1i 623 . . . . . . . 8 ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))
1712, 16bitr2i 277 . . . . . . 7 ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))
1811, 17anbi12i 626 . . . . . 6 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)))
197, 18bitri 276 . . . . 5 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)))
206, 19bitri 276 . . . 4 ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)))
214, 20bitri 276 . . 3 ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)))
2221rabbia2 3483 . 2 {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)}
232, 22eqtri 2849 1 (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  {crab 3147  {cpr 4566  ‘cfv 6352  (class class class)co 7148  0cc0 10526  1c1 10527  2c2 11681  ♯chash 13680  Word cword 13851  Vtxcvtx 26695  Edgcedg 26746   ClWWalksN cclwwlkn 27716  ClWWalksNOncclwwlknon 27780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-lsw 13905  df-clwwlk 27674  df-clwwlkn 27717  df-clwwlknon 27781 This theorem is referenced by:  s2elclwwlknon2  27797  clwwlknon2num  27798
 Copyright terms: Public domain W3C validator