| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon2x | Structured version Visualization version GIF version | ||
| Description: The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
| clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknon2x | ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknon2.c | . . 3 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
| 2 | 1 | clwwlknon2 30103 | . 2 ⊢ (𝑋𝐶2) = {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
| 3 | clwwlkn2 30045 | . . . . 5 ⊢ (𝑤 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) | |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) |
| 5 | 3anan12 1095 | . . . . . 6 ⊢ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))) | |
| 6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋)) |
| 7 | anass 468 | . . . . . 6 ⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))) | |
| 8 | clwwlknon2x.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | 8 | eqcomi 2742 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = 𝑉 |
| 10 | 9 | wrdeqi 14451 | . . . . . . . 8 ⊢ Word (Vtx‘𝐺) = Word 𝑉 |
| 11 | 10 | eleq2i 2825 | . . . . . . 7 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉) |
| 12 | df-3an 1088 | . . . . . . . 8 ⊢ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋)) | |
| 13 | clwwlknon2x.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
| 14 | 13 | eleq2i 2825 | . . . . . . . . . 10 ⊢ ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) |
| 15 | 14 | anbi2i 623 | . . . . . . . . 9 ⊢ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) |
| 16 | 15 | anbi1i 624 | . . . . . . . 8 ⊢ ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) |
| 17 | 12, 16 | bitr2i 276 | . . . . . . 7 ⊢ ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)) |
| 18 | 11, 17 | anbi12i 628 | . . . . . 6 ⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 19 | 7, 18 | bitri 275 | . . . . 5 ⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 20 | 6, 19 | bitri 275 | . . . 4 ⊢ ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 21 | 4, 20 | bitri 275 | . . 3 ⊢ ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 22 | 21 | rabbia2 3399 | . 2 ⊢ {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| 23 | 2, 22 | eqtri 2756 | 1 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3396 {cpr 4579 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 2c2 12191 ♯chash 14244 Word cword 14427 Vtxcvtx 28995 Edgcedg 29046 ClWWalksN cclwwlkn 30025 ClWWalksNOncclwwlknon 30088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-xnn0 12466 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-lsw 14477 df-clwwlk 29983 df-clwwlkn 30026 df-clwwlknon 30089 |
| This theorem is referenced by: s2elclwwlknon2 30105 clwwlknon2num 30106 |
| Copyright terms: Public domain | W3C validator |