Step | Hyp | Ref
| Expression |
1 | | clwwlknon2.c |
. . 3
β’ πΆ = (ClWWalksNOnβπΊ) |
2 | 1 | clwwlknon2 29824 |
. 2
β’ (ππΆ2) = {π€ β (2 ClWWalksN πΊ) β£ (π€β0) = π} |
3 | | clwwlkn2 29766 |
. . . . 5
β’ (π€ β (2 ClWWalksN πΊ) β ((β―βπ€) = 2 β§ π€ β Word (VtxβπΊ) β§ {(π€β0), (π€β1)} β (EdgβπΊ))) |
4 | 3 | anbi1i 623 |
. . . 4
β’ ((π€ β (2 ClWWalksN πΊ) β§ (π€β0) = π) β (((β―βπ€) = 2 β§ π€ β Word (VtxβπΊ) β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β§ (π€β0) = π)) |
5 | | 3anan12 1093 |
. . . . . 6
β’
(((β―βπ€)
= 2 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β (π€ β Word (VtxβπΊ) β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ)))) |
6 | 5 | anbi1i 623 |
. . . . 5
β’
((((β―βπ€)
= 2 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β§ (π€β0) = π) β ((π€ β Word (VtxβπΊ) β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ))) β§ (π€β0) = π)) |
7 | | anass 468 |
. . . . . 6
β’ (((π€ β Word (VtxβπΊ) β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ))) β§ (π€β0) = π) β (π€ β Word (VtxβπΊ) β§ (((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β§ (π€β0) = π))) |
8 | | clwwlknon2x.v |
. . . . . . . . . 10
β’ π = (VtxβπΊ) |
9 | 8 | eqcomi 2733 |
. . . . . . . . 9
β’
(VtxβπΊ) =
π |
10 | 9 | wrdeqi 14484 |
. . . . . . . 8
β’ Word
(VtxβπΊ) = Word π |
11 | 10 | eleq2i 2817 |
. . . . . . 7
β’ (π€ β Word (VtxβπΊ) β π€ β Word π) |
12 | | df-3an 1086 |
. . . . . . . 8
β’
(((β―βπ€)
= 2 β§ {(π€β0),
(π€β1)} β πΈ β§ (π€β0) = π) β (((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ) β§ (π€β0) = π)) |
13 | | clwwlknon2x.e |
. . . . . . . . . . 11
β’ πΈ = (EdgβπΊ) |
14 | 13 | eleq2i 2817 |
. . . . . . . . . 10
β’ ({(π€β0), (π€β1)} β πΈ β {(π€β0), (π€β1)} β (EdgβπΊ)) |
15 | 14 | anbi2i 622 |
. . . . . . . . 9
β’
(((β―βπ€)
= 2 β§ {(π€β0),
(π€β1)} β πΈ) β ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ))) |
16 | 15 | anbi1i 623 |
. . . . . . . 8
β’
((((β―βπ€)
= 2 β§ {(π€β0),
(π€β1)} β πΈ) β§ (π€β0) = π) β (((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β§ (π€β0) = π)) |
17 | 12, 16 | bitr2i 276 |
. . . . . . 7
β’
((((β―βπ€)
= 2 β§ {(π€β0),
(π€β1)} β
(EdgβπΊ)) β§ (π€β0) = π) β ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π)) |
18 | 11, 17 | anbi12i 626 |
. . . . . 6
β’ ((π€ β Word (VtxβπΊ) β§ (((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β§ (π€β0) = π)) β (π€ β Word π β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π))) |
19 | 7, 18 | bitri 275 |
. . . . 5
β’ (((π€ β Word (VtxβπΊ) β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β (EdgβπΊ))) β§ (π€β0) = π) β (π€ β Word π β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π))) |
20 | 6, 19 | bitri 275 |
. . . 4
β’
((((β―βπ€)
= 2 β§ π€ β Word
(VtxβπΊ) β§ {(π€β0), (π€β1)} β (EdgβπΊ)) β§ (π€β0) = π) β (π€ β Word π β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π))) |
21 | 4, 20 | bitri 275 |
. . 3
β’ ((π€ β (2 ClWWalksN πΊ) β§ (π€β0) = π) β (π€ β Word π β§ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π))) |
22 | 21 | rabbia2 3427 |
. 2
β’ {π€ β (2 ClWWalksN πΊ) β£ (π€β0) = π} = {π€ β Word π β£ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π)} |
23 | 2, 22 | eqtri 2752 |
1
β’ (ππΆ2) = {π€ β Word π β£ ((β―βπ€) = 2 β§ {(π€β0), (π€β1)} β πΈ β§ (π€β0) = π)} |