MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon2x Structured version   Visualization version   GIF version

Theorem clwwlknon2x 29825
Description: The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon2.c 𝐢 = (ClWWalksNOnβ€˜πΊ)
clwwlknon2x.v 𝑉 = (Vtxβ€˜πΊ)
clwwlknon2x.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
clwwlknon2x (𝑋𝐢2) = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)}
Distinct variable groups:   𝑀,𝐺   𝑀,𝑋
Allowed substitution hints:   𝐢(𝑀)   𝐸(𝑀)   𝑉(𝑀)

Proof of Theorem clwwlknon2x
StepHypRef Expression
1 clwwlknon2.c . . 3 𝐢 = (ClWWalksNOnβ€˜πΊ)
21clwwlknon2 29824 . 2 (𝑋𝐢2) = {𝑀 ∈ (2 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}
3 clwwlkn2 29766 . . . . 5 (𝑀 ∈ (2 ClWWalksN 𝐺) ↔ ((β™―β€˜π‘€) = 2 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
43anbi1i 623 . . . 4 ((𝑀 ∈ (2 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ↔ (((β™―β€˜π‘€) = 2 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋))
5 3anan12 1093 . . . . . 6 (((β™―β€˜π‘€) = 2 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
65anbi1i 623 . . . . 5 ((((β™―β€˜π‘€) = 2 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) ↔ ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))) ∧ (π‘€β€˜0) = 𝑋))
7 anass 468 . . . . . 6 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)))
8 clwwlknon2x.v . . . . . . . . . 10 𝑉 = (Vtxβ€˜πΊ)
98eqcomi 2733 . . . . . . . . 9 (Vtxβ€˜πΊ) = 𝑉
109wrdeqi 14484 . . . . . . . 8 Word (Vtxβ€˜πΊ) = Word 𝑉
1110eleq2i 2817 . . . . . . 7 (𝑀 ∈ Word (Vtxβ€˜πΊ) ↔ 𝑀 ∈ Word 𝑉)
12 df-3an 1086 . . . . . . . 8 (((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋) ↔ (((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸) ∧ (π‘€β€˜0) = 𝑋))
13 clwwlknon2x.e . . . . . . . . . . 11 𝐸 = (Edgβ€˜πΊ)
1413eleq2i 2817 . . . . . . . . . 10 ({(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))
1514anbi2i 622 . . . . . . . . 9 (((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸) ↔ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
1615anbi1i 623 . . . . . . . 8 ((((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸) ∧ (π‘€β€˜0) = 𝑋) ↔ (((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋))
1712, 16bitr2i 276 . . . . . . 7 ((((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) ↔ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋))
1811, 17anbi12i 626 . . . . . 6 ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋)) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)))
197, 18bitri 275 . . . . 5 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)))
206, 19bitri 275 . . . 4 ((((β™―β€˜π‘€) = 2 ∧ 𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)))
214, 20bitri 275 . . 3 ((𝑀 ∈ (2 ClWWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)))
2221rabbia2 3427 . 2 {𝑀 ∈ (2 ClWWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)}
232, 22eqtri 2752 1 (𝑋𝐢2) = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ 𝐸 ∧ (π‘€β€˜0) = 𝑋)}
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {crab 3424  {cpr 4622  β€˜cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107  2c2 12264  β™―chash 14287  Word cword 14461  Vtxcvtx 28725  Edgcedg 28776   ClWWalksN cclwwlkn 29746  ClWWalksNOncclwwlknon 29809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-lsw 14510  df-clwwlk 29704  df-clwwlkn 29747  df-clwwlknon 29810
This theorem is referenced by:  s2elclwwlknon2  29826  clwwlknon2num  29827
  Copyright terms: Public domain W3C validator