| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon2x | Structured version Visualization version GIF version | ||
| Description: The set of closed walks on vertex 𝑋 of length 2 in a graph 𝐺 as words over the set of vertices, definition of ClWWalksN expanded. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
| clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknon2x | ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknon2.c | . . 3 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
| 2 | 1 | clwwlknon2 30074 | . 2 ⊢ (𝑋𝐶2) = {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} |
| 3 | clwwlkn2 30016 | . . . . 5 ⊢ (𝑤 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) | |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) |
| 5 | 3anan12 1095 | . . . . . 6 ⊢ (((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))) | |
| 6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋)) |
| 7 | anass 468 | . . . . . 6 ⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋))) | |
| 8 | clwwlknon2x.v | . . . . . . . . . 10 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | 8 | eqcomi 2740 | . . . . . . . . 9 ⊢ (Vtx‘𝐺) = 𝑉 |
| 10 | 9 | wrdeqi 14439 | . . . . . . . 8 ⊢ Word (Vtx‘𝐺) = Word 𝑉 |
| 11 | 10 | eleq2i 2823 | . . . . . . 7 ⊢ (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word 𝑉) |
| 12 | df-3an 1088 | . . . . . . . 8 ⊢ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋)) | |
| 13 | clwwlknon2x.e | . . . . . . . . . . 11 ⊢ 𝐸 = (Edg‘𝐺) | |
| 14 | 13 | eleq2i 2823 | . . . . . . . . . 10 ⊢ ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) |
| 15 | 14 | anbi2i 623 | . . . . . . . . 9 ⊢ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) |
| 16 | 15 | anbi1i 624 | . . . . . . . 8 ⊢ ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸) ∧ (𝑤‘0) = 𝑋) ↔ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) |
| 17 | 12, 16 | bitr2i 276 | . . . . . . 7 ⊢ ((((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)) |
| 18 | 11, 17 | anbi12i 628 | . . . . . 6 ⊢ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 19 | 7, 18 | bitri 275 | . . . . 5 ⊢ (((𝑤 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 20 | 6, 19 | bitri 275 | . . . 4 ⊢ ((((♯‘𝑤) = 2 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 21 | 4, 20 | bitri 275 | . . 3 ⊢ ((𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋))) |
| 22 | 21 | rabbia2 3398 | . 2 ⊢ {𝑤 ∈ (2 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| 23 | 2, 22 | eqtri 2754 | 1 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 {cpr 4573 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 2c2 12175 ♯chash 14232 Word cword 14415 Vtxcvtx 28969 Edgcedg 29020 ClWWalksN cclwwlkn 29996 ClWWalksNOncclwwlknon 30059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-lsw 14465 df-clwwlk 29954 df-clwwlkn 29997 df-clwwlknon 30060 |
| This theorem is referenced by: s2elclwwlknon2 30076 clwwlknon2num 30077 |
| Copyright terms: Public domain | W3C validator |