Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwwlkovh | Structured version Visualization version GIF version |
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. Definition of ClWWalksNOn resolved. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlkovh.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
Ref | Expression |
---|---|
numclwwlkovh | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlkovh.h | . . 3 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
2 | 1 | numclwwlkovh0 28732 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
3 | isclwwlknon 28451 | . . . . 5 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) | |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
5 | simpll 764 | . . . . . 6 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) | |
6 | simplr 766 | . . . . . . 7 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘0) = 𝑋) | |
7 | neeq2 3009 | . . . . . . . . . 10 ⊢ (𝑋 = (𝑤‘0) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) | |
8 | 7 | eqcoms 2748 | . . . . . . . . 9 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
9 | 8 | adantl 482 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
10 | 9 | biimpa 477 | . . . . . . 7 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) |
11 | 6, 10 | jca 512 | . . . . . 6 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
12 | 5, 11 | jca 512 | . . . . 5 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
13 | simpl 483 | . . . . . . 7 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘0) = 𝑋) | |
14 | 13 | anim2i 617 | . . . . . 6 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) |
15 | neeq2 3009 | . . . . . . . 8 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) | |
16 | 15 | biimpa 477 | . . . . . . 7 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘(𝑁 − 2)) ≠ 𝑋) |
17 | 16 | adantl 482 | . . . . . 6 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤‘(𝑁 − 2)) ≠ 𝑋) |
18 | 14, 17 | jca 512 | . . . . 5 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
19 | 12, 18 | impbii 208 | . . . 4 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
20 | 4, 19 | bitri 274 | . . 3 ⊢ ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
21 | 20 | rabbia2 3410 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} |
22 | 2, 21 | eqtrdi 2796 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 {crab 3070 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 0cc0 10872 − cmin 11205 2c2 12028 ℤ≥cuz 12581 ClWWalksN cclwwlkn 28384 ClWWalksNOncclwwlknon 28447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-hash 14043 df-word 14216 df-clwwlk 28342 df-clwwlkn 28385 df-clwwlknon 28448 |
This theorem is referenced by: numclwwlk2lem1 28736 numclwlk2lem2f 28737 numclwlk2lem2f1o 28739 |
Copyright terms: Public domain | W3C validator |