![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkovh | Structured version Visualization version GIF version |
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. Definition of ClWWalksNOn resolved. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlkovh.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
Ref | Expression |
---|---|
numclwwlkovh | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlkovh.h | . . 3 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
2 | 1 | numclwwlkovh0 27771 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
3 | isclwwlknon 27462 | . . . . 5 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) | |
4 | 3 | anbi1i 617 | . . . 4 ⊢ ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
5 | simpll 783 | . . . . . 6 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) | |
6 | simplr 785 | . . . . . . 7 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘0) = 𝑋) | |
7 | neeq2 3062 | . . . . . . . . . 10 ⊢ (𝑋 = (𝑤‘0) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) | |
8 | 7 | eqcoms 2833 | . . . . . . . . 9 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
9 | 8 | adantl 475 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
10 | 9 | biimpa 470 | . . . . . . 7 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) |
11 | 6, 10 | jca 507 | . . . . . 6 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
12 | 5, 11 | jca 507 | . . . . 5 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
13 | simpl 476 | . . . . . . 7 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘0) = 𝑋) | |
14 | 13 | anim2i 610 | . . . . . 6 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) |
15 | neeq2 3062 | . . . . . . . 8 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) | |
16 | 15 | biimpa 470 | . . . . . . 7 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘(𝑁 − 2)) ≠ 𝑋) |
17 | 16 | adantl 475 | . . . . . 6 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤‘(𝑁 − 2)) ≠ 𝑋) |
18 | 14, 17 | jca 507 | . . . . 5 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
19 | 12, 18 | impbii 201 | . . . 4 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
20 | 4, 19 | bitri 267 | . . 3 ⊢ ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
21 | 20 | rabbia2 3400 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} |
22 | 2, 21 | syl6eq 2877 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 {crab 3121 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 0cc0 10259 − cmin 10592 2c2 11413 ℤ≥cuz 11975 ClWWalksN cclwwlkn 27369 ClWWalksNOncclwwlknon 27458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-xnn0 11698 df-z 11712 df-uz 11976 df-fz 12627 df-fzo 12768 df-hash 13418 df-word 13582 df-clwwlk 27318 df-clwwlkn 27370 df-clwwlknon 27459 |
This theorem is referenced by: numclwwlk2lem1 27775 numclwlk2lem2f 27776 numclwlk2lem2f1o 27778 numclwlk2lem2fOLD 27779 numclwlk2lem2f1oOLD 27781 |
Copyright terms: Public domain | W3C validator |