MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovh Structured version   Visualization version   GIF version

Theorem numclwwlkovh 30355
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. Definition of ClWWalksNOn resolved. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.)
Hypothesis
Ref Expression
numclwwlkovh.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlkovh ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovh
StepHypRef Expression
1 numclwwlkovh.h . . 3 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
21numclwwlkovh0 30354 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
3 isclwwlknon 30073 . . . . 5 (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
43anbi1i 624 . . . 4 ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋))
5 simpll 766 . . . . . 6 (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
6 simplr 768 . . . . . . 7 (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘0) = 𝑋)
7 neeq2 2992 . . . . . . . . . 10 (𝑋 = (𝑤‘0) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))
87eqcoms 2741 . . . . . . . . 9 ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))
98adantl 481 . . . . . . . 8 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))
109biimpa 476 . . . . . . 7 (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))
116, 10jca 511 . . . . . 6 (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))
125, 11jca 511 . . . . 5 (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))))
13 simpl 482 . . . . . . 7 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘0) = 𝑋)
1413anim2i 617 . . . . . 6 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
15 neeq2 2992 . . . . . . . 8 ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋))
1615biimpa 476 . . . . . . 7 (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘(𝑁 − 2)) ≠ 𝑋)
1716adantl 481 . . . . . 6 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤‘(𝑁 − 2)) ≠ 𝑋)
1814, 17jca 511 . . . . 5 ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋))
1912, 18impbii 209 . . . 4 (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))))
204, 19bitri 275 . . 3 ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))))
2120rabbia2 3399 . 2 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}
222, 21eqtrdi 2784 1 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  {crab 3396  cfv 6486  (class class class)co 7352  cmpo 7354  0cc0 11013  cmin 11351  2c2 12187  cuz 12738   ClWWalksN cclwwlkn 30006  ClWWalksNOncclwwlknon 30069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-clwwlk 29964  df-clwwlkn 30007  df-clwwlknon 30070
This theorem is referenced by:  numclwwlk2lem1  30358  numclwlk2lem2f  30359  numclwlk2lem2f1o  30361
  Copyright terms: Public domain W3C validator