| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlkovh | Structured version Visualization version GIF version | ||
| Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. Definition of ClWWalksNOn resolved. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.) |
| Ref | Expression |
|---|---|
| numclwwlkovh.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
| Ref | Expression |
|---|---|
| numclwwlkovh | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numclwwlkovh.h | . . 3 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
| 2 | 1 | numclwwlkovh0 30354 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
| 3 | isclwwlknon 30073 | . . . . 5 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) | |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
| 5 | simpll 766 | . . . . . 6 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)) | |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘0) = 𝑋) | |
| 7 | neeq2 2992 | . . . . . . . . . 10 ⊢ (𝑋 = (𝑤‘0) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) | |
| 8 | 7 | eqcoms 2741 | . . . . . . . . 9 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
| 9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) → ((𝑤‘(𝑁 − 2)) ≠ 𝑋 ↔ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
| 10 | 9 | biimpa 476 | . . . . . . 7 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) |
| 11 | 6, 10 | jca 511 | . . . . . 6 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) |
| 12 | 5, 11 | jca 511 | . . . . 5 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
| 13 | simpl 482 | . . . . . . 7 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘0) = 𝑋) | |
| 14 | 13 | anim2i 617 | . . . . . 6 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) |
| 15 | neeq2 2992 | . . . . . . . 8 ⊢ ((𝑤‘0) = 𝑋 → ((𝑤‘(𝑁 − 2)) ≠ (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) | |
| 16 | 15 | biimpa 476 | . . . . . . 7 ⊢ (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)) → (𝑤‘(𝑁 − 2)) ≠ 𝑋) |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → (𝑤‘(𝑁 − 2)) ≠ 𝑋) |
| 18 | 14, 17 | jca 511 | . . . . 5 ⊢ ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
| 19 | 12, 18 | impbii 209 | . . . 4 ⊢ (((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
| 20 | 4, 19 | bitri 275 | . . 3 ⊢ ((𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑤‘(𝑁 − 2)) ≠ 𝑋) ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0)))) |
| 21 | 20 | rabbia2 3399 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))} |
| 22 | 2, 21 | eqtrdi 2784 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) ≠ (𝑤‘0))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 − cmin 11351 2c2 12187 ℤ≥cuz 12738 ClWWalksN cclwwlkn 30006 ClWWalksNOncclwwlknon 30069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-clwwlk 29964 df-clwwlkn 30007 df-clwwlknon 30070 |
| This theorem is referenced by: numclwwlk2lem1 30358 numclwlk2lem2f 30359 numclwlk2lem2f1o 30361 |
| Copyright terms: Public domain | W3C validator |