Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem3 | Structured version Visualization version GIF version |
Description: Lemma for finsumvtxdg2sstep 28146. (Contributed by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
finsumvtxdg2ssteplem3 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finsumvtxdg2ssteplem.j | . . . . . . . . . . 11 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
2 | 1 | rabeq2i 3425 | . . . . . . . . . 10 ⊢ (𝑖 ∈ 𝐽 ↔ (𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖))) |
3 | 2 | anbi1i 624 | . . . . . . . . 9 ⊢ ((𝑖 ∈ 𝐽 ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ ((𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖)) ∧ 𝑣 ∈ (𝐸‘𝑖))) |
4 | anass 469 | . . . . . . . . 9 ⊢ (((𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖)) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)))) | |
5 | 3, 4 | bitri 274 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝐽 ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)))) |
6 | 5 | rabbia2 3406 | . . . . . . 7 ⊢ {𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} |
7 | 6 | fveq2i 6822 | . . . . . 6 ⊢ (♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
9 | 8 | sumeq2dv 15506 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
10 | 9 | oveq1d 7344 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
11 | simpll 764 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐺 ∈ UPGraph) | |
12 | simpr 485 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) | |
13 | simplr 766 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∈ 𝑉) | |
14 | finsumvtxdg2sstep.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | finsumvtxdg2sstep.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
16 | 14, 15 | numedglnl 27744 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
17 | 11, 12, 13, 16 | syl3anc 1370 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
18 | 10, 17 | eqtrd 2776 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
19 | 1 | fveq2i 6822 | . 2 ⊢ (♯‘𝐽) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
20 | 18, 19 | eqtr4di 2794 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∉ wnel 3046 {crab 3403 ∖ cdif 3894 {csn 4572 〈cop 4578 dom cdm 5614 ↾ cres 5616 ‘cfv 6473 (class class class)co 7329 Fincfn 8796 + caddc 10967 ♯chash 14137 Σcsu 15488 Vtxcvtx 27596 iEdgciedg 27597 UPGraphcupgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-disj 5055 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-oi 9359 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-sum 15489 df-edg 27648 df-uhgr 27658 df-upgr 27682 |
This theorem is referenced by: finsumvtxdg2ssteplem4 28145 |
Copyright terms: Public domain | W3C validator |