| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for finsumvtxdg2sstep 29528. (Contributed by AV, 19-Dec-2021.) |
| Ref | Expression |
|---|---|
| finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| Ref | Expression |
|---|---|
| finsumvtxdg2ssteplem3 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdg2ssteplem.j | . . . . . . . . . . 11 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
| 2 | 1 | reqabi 3418 | . . . . . . . . . 10 ⊢ (𝑖 ∈ 𝐽 ↔ (𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖))) |
| 3 | 2 | anbi1i 624 | . . . . . . . . 9 ⊢ ((𝑖 ∈ 𝐽 ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ ((𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖)) ∧ 𝑣 ∈ (𝐸‘𝑖))) |
| 4 | anass 468 | . . . . . . . . 9 ⊢ (((𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖)) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)))) | |
| 5 | 3, 4 | bitri 275 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝐽 ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)))) |
| 6 | 5 | rabbia2 3398 | . . . . . . 7 ⊢ {𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} |
| 7 | 6 | fveq2i 6825 | . . . . . 6 ⊢ (♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
| 9 | 8 | sumeq2dv 15609 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
| 10 | 9 | oveq1d 7361 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
| 11 | simpll 766 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐺 ∈ UPGraph) | |
| 12 | simpr 484 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) | |
| 13 | simplr 768 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∈ 𝑉) | |
| 14 | finsumvtxdg2sstep.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 15 | finsumvtxdg2sstep.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 16 | 14, 15 | numedglnl 29122 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
| 17 | 11, 12, 13, 16 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
| 18 | 10, 17 | eqtrd 2766 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
| 19 | 1 | fveq2i 6825 | . 2 ⊢ (♯‘𝐽) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
| 20 | 18, 19 | eqtr4di 2784 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 ∖ cdif 3894 {csn 4573 〈cop 4579 dom cdm 5614 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 + caddc 11009 ♯chash 14237 Σcsu 15593 Vtxcvtx 28974 iEdgciedg 28975 UPGraphcupgr 29058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-edg 29026 df-uhgr 29036 df-upgr 29060 |
| This theorem is referenced by: finsumvtxdg2ssteplem4 29527 |
| Copyright terms: Public domain | W3C validator |