![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem3 | Structured version Visualization version GIF version |
Description: Lemma for finsumvtxdg2sstep 28795. (Contributed by AV, 19-Dec-2021.) |
Ref | Expression |
---|---|
finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
finsumvtxdg2sstep.s | ⊢ 𝑆 = ⟨𝐾, 𝑃⟩ |
finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
finsumvtxdg2ssteplem3 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finsumvtxdg2ssteplem.j | . . . . . . . . . . 11 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
2 | 1 | reqabi 3454 | . . . . . . . . . 10 ⊢ (𝑖 ∈ 𝐽 ↔ (𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖))) |
3 | 2 | anbi1i 624 | . . . . . . . . 9 ⊢ ((𝑖 ∈ 𝐽 ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ ((𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖)) ∧ 𝑣 ∈ (𝐸‘𝑖))) |
4 | anass 469 | . . . . . . . . 9 ⊢ (((𝑖 ∈ dom 𝐸 ∧ 𝑁 ∈ (𝐸‘𝑖)) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)))) | |
5 | 3, 4 | bitri 274 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝐽 ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)))) |
6 | 5 | rabbia2 3435 | . . . . . . 7 ⊢ {𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} |
7 | 6 | fveq2i 6891 | . . . . . 6 ⊢ (♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
9 | 8 | sumeq2dv 15645 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
10 | 9 | oveq1d 7420 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
11 | simpll 765 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐺 ∈ UPGraph) | |
12 | simpr 485 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) | |
13 | simplr 767 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁 ∈ 𝑉) | |
14 | finsumvtxdg2sstep.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | finsumvtxdg2sstep.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
16 | 14, 15 | numedglnl 28393 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
17 | 11, 12, 13, 16 | syl3anc 1371 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
18 | 10, 17 | eqtrd 2772 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
19 | 1 | fveq2i 6891 | . 2 ⊢ (♯‘𝐽) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
20 | 18, 19 | eqtr4di 2790 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 {crab 3432 ∖ cdif 3944 {csn 4627 ⟨cop 4633 dom cdm 5675 ↾ cres 5677 ‘cfv 6540 (class class class)co 7405 Fincfn 8935 + caddc 11109 ♯chash 14286 Σcsu 15628 Vtxcvtx 28245 iEdgciedg 28246 UPGraphcupgr 28329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-edg 28297 df-uhgr 28307 df-upgr 28331 |
This theorem is referenced by: finsumvtxdg2ssteplem4 28794 |
Copyright terms: Public domain | W3C validator |