MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem3 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem3 27256
Description: Lemma for finsumvtxdg2sstep 27258. (Contributed by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘𝐽))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝑁   𝑖,𝑉,𝑣
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐽(𝑣,𝑖)   𝐾(𝑣,𝑖)

Proof of Theorem finsumvtxdg2ssteplem3
StepHypRef Expression
1 finsumvtxdg2ssteplem.j . . . . . . . . . . 11 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
21rabeq2i 3485 . . . . . . . . . 10 (𝑖𝐽 ↔ (𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)))
32anbi1i 623 . . . . . . . . 9 ((𝑖𝐽𝑣 ∈ (𝐸𝑖)) ↔ ((𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)) ∧ 𝑣 ∈ (𝐸𝑖)))
4 anass 469 . . . . . . . . 9 (((𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)) ∧ 𝑣 ∈ (𝐸𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))))
53, 4bitri 276 . . . . . . . 8 ((𝑖𝐽𝑣 ∈ (𝐸𝑖)) ↔ (𝑖 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))))
65rabbia2 3475 . . . . . . 7 {𝑖𝐽𝑣 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}
76fveq2i 6666 . . . . . 6 (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))})
87a1i 11 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) = (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}))
98sumeq2dv 15048 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}))
109oveq1d 7160 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
11 simpll 763 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐺 ∈ UPGraph)
12 simpr 485 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin))
13 simplr 765 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝑁𝑉)
14 finsumvtxdg2sstep.v . . . . 5 𝑉 = (Vtx‘𝐺)
15 finsumvtxdg2sstep.e . . . . 5 𝐸 = (iEdg‘𝐺)
1614, 15numedglnl 26856 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
1711, 12, 13, 16syl3anc 1363 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸𝑖) ∧ 𝑣 ∈ (𝐸𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
1810, 17eqtrd 2853 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}))
191fveq2i 6666 . 2 (♯‘𝐽) = (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)})
2018, 19syl6eqr 2871 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wnel 3120  {crab 3139  cdif 3930  {csn 4557  cop 4563  dom cdm 5548  cres 5550  cfv 6348  (class class class)co 7145  Fincfn 8497   + caddc 10528  chash 13678  Σcsu 15030  Vtxcvtx 26708  iEdgciedg 26709  UPGraphcupgr 26792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-edg 26760  df-uhgr 26770  df-upgr 26794
This theorem is referenced by:  finsumvtxdg2ssteplem4  27257
  Copyright terms: Public domain W3C validator