Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfdf Structured version   Visualization version   GIF version

Theorem issmfdf 44273
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfdf.x 𝑥𝐹
issmfdf.a 𝑎𝜑
issmfdf.s (𝜑𝑆 ∈ SAlg)
issmfdf.d (𝜑𝐷 𝑆)
issmfdf.f (𝜑𝐹:𝐷⟶ℝ)
issmfdf.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfdf (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝐹,𝑎   𝑆,𝑎   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑎)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem issmfdf
StepHypRef Expression
1 issmfdf.f . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
21fdmd 6611 . . . 4 (𝜑 → dom 𝐹 = 𝐷)
3 issmfdf.d . . . 4 (𝜑𝐷 𝑆)
42, 3eqsstrd 3959 . . 3 (𝜑 → dom 𝐹 𝑆)
51ffdmd 6631 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
6 issmfdf.a . . . 4 𝑎𝜑
7 issmfdf.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
8 issmfdf.x . . . . . . . . . . 11 𝑥𝐹
98nfdm 5860 . . . . . . . . . 10 𝑥dom 𝐹
10 nfcv 2907 . . . . . . . . . 10 𝑥𝐷
119, 10rabeqf 3415 . . . . . . . . 9 (dom 𝐹 = 𝐷 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
122, 11syl 17 . . . . . . . 8 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
132oveq2d 7291 . . . . . . . 8 (𝜑 → (𝑆t dom 𝐹) = (𝑆t 𝐷))
1412, 13eleq12d 2833 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
1514adantr 481 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
167, 15mpbird 256 . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
1716ex 413 . . . 4 (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹)))
186, 17ralrimi 3141 . . 3 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
194, 5, 183jca 1127 . 2 (𝜑 → (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹)))
20 issmfdf.s . . 3 (𝜑𝑆 ∈ SAlg)
21 eqid 2738 . . 3 dom 𝐹 = dom 𝐹
228, 20, 21issmff 44270 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))))
2319, 22mpbird 256 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  wral 3064  {crab 3068  wss 3887   cuni 4839   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cr 10870   < clt 11009  t crest 17131  SAlgcsalg 43849  SMblFncsmblfn 44233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-ico 13085  df-smblfn 44234
This theorem is referenced by:  issmfdmpt  44284  smfconst  44285
  Copyright terms: Public domain W3C validator