| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdf | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfdf.x | ⊢ Ⅎ𝑥𝐹 |
| issmfdf.a | ⊢ Ⅎ𝑎𝜑 |
| issmfdf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfdf.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| issmfdf.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| issmfdf.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| Ref | Expression |
|---|---|
| issmfdf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmfdf.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
| 2 | 1 | fdmd 6698 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | issmfdf.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
| 4 | 2, 3 | eqsstrd 3981 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 5 | 1 | ffdmd 6718 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 6 | issmfdf.a | . . . 4 ⊢ Ⅎ𝑎𝜑 | |
| 7 | issmfdf.p | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) | |
| 8 | issmfdf.x | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
| 9 | 8 | nfdm 5915 | . . . . . . . . . 10 ⊢ Ⅎ𝑥dom 𝐹 |
| 10 | nfcv 2891 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝐷 | |
| 11 | 9, 10 | rabeqf 3440 | . . . . . . . . 9 ⊢ (dom 𝐹 = 𝐷 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
| 12 | 2, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
| 13 | 2 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾t dom 𝐹) = (𝑆 ↾t 𝐷)) |
| 14 | 12, 13 | eleq12d 2822 | . . . . . . 7 ⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 16 | 7, 15 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 17 | 16 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
| 18 | 6, 17 | ralrimi 3235 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 19 | 4, 5, 18 | 3jca 1128 | . 2 ⊢ (𝜑 → (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
| 20 | issmfdf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 21 | eqid 2729 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
| 22 | 8, 20, 21 | issmff 46732 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)))) |
| 23 | 19, 22 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 {crab 3405 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 < clt 11208 ↾t crest 17383 SAlgcsalg 46306 SMblFncsmblfn 46693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-ico 13312 df-smblfn 46694 |
| This theorem is referenced by: issmfdmpt 46746 smfconst 46747 |
| Copyright terms: Public domain | W3C validator |