![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdf | Structured version Visualization version GIF version |
Description: A sufficient condition for "πΉ being a measurable function w.r.t. to the sigma-algebra π". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfdf.x | β’ β²π₯πΉ |
issmfdf.a | β’ β²ππ |
issmfdf.s | β’ (π β π β SAlg) |
issmfdf.d | β’ (π β π· β βͺ π) |
issmfdf.f | β’ (π β πΉ:π·βΆβ) |
issmfdf.p | β’ ((π β§ π β β) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) |
Ref | Expression |
---|---|
issmfdf | β’ (π β πΉ β (SMblFnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfdf.f | . . . . 5 β’ (π β πΉ:π·βΆβ) | |
2 | 1 | fdmd 6725 | . . . 4 β’ (π β dom πΉ = π·) |
3 | issmfdf.d | . . . 4 β’ (π β π· β βͺ π) | |
4 | 2, 3 | eqsstrd 4019 | . . 3 β’ (π β dom πΉ β βͺ π) |
5 | 1 | ffdmd 6745 | . . 3 β’ (π β πΉ:dom πΉβΆβ) |
6 | issmfdf.a | . . . 4 β’ β²ππ | |
7 | issmfdf.p | . . . . . 6 β’ ((π β§ π β β) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) | |
8 | issmfdf.x | . . . . . . . . . . 11 β’ β²π₯πΉ | |
9 | 8 | nfdm 5948 | . . . . . . . . . 10 β’ β²π₯dom πΉ |
10 | nfcv 2903 | . . . . . . . . . 10 β’ β²π₯π· | |
11 | 9, 10 | rabeqf 3466 | . . . . . . . . 9 β’ (dom πΉ = π· β {π₯ β dom πΉ β£ (πΉβπ₯) < π} = {π₯ β π· β£ (πΉβπ₯) < π}) |
12 | 2, 11 | syl 17 | . . . . . . . 8 β’ (π β {π₯ β dom πΉ β£ (πΉβπ₯) < π} = {π₯ β π· β£ (πΉβπ₯) < π}) |
13 | 2 | oveq2d 7421 | . . . . . . . 8 β’ (π β (π βΎt dom πΉ) = (π βΎt π·)) |
14 | 12, 13 | eleq12d 2827 | . . . . . . 7 β’ (π β ({π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
15 | 14 | adantr 481 | . . . . . 6 β’ ((π β§ π β β) β ({π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
16 | 7, 15 | mpbird 256 | . . . . 5 β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
17 | 16 | ex 413 | . . . 4 β’ (π β (π β β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ))) |
18 | 6, 17 | ralrimi 3254 | . . 3 β’ (π β βπ β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
19 | 4, 5, 18 | 3jca 1128 | . 2 β’ (π β (dom πΉ β βͺ π β§ πΉ:dom πΉβΆβ β§ βπ β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ))) |
20 | issmfdf.s | . . 3 β’ (π β π β SAlg) | |
21 | eqid 2732 | . . 3 β’ dom πΉ = dom πΉ | |
22 | 8, 20, 21 | issmff 45436 | . 2 β’ (π β (πΉ β (SMblFnβπ) β (dom πΉ β βͺ π β§ πΉ:dom πΉβΆβ β§ βπ β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)))) |
23 | 19, 22 | mpbird 256 | 1 β’ (π β πΉ β (SMblFnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β²wnf 1785 β wcel 2106 β²wnfc 2883 βwral 3061 {crab 3432 β wss 3947 βͺ cuni 4907 class class class wbr 5147 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcr 11105 < clt 11244 βΎt crest 17362 SAlgcsalg 45010 SMblFncsmblfn 45397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ioo 13324 df-ico 13326 df-smblfn 45398 |
This theorem is referenced by: issmfdmpt 45450 smfconst 45451 |
Copyright terms: Public domain | W3C validator |