| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfdf | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfdf.x | ⊢ Ⅎ𝑥𝐹 |
| issmfdf.a | ⊢ Ⅎ𝑎𝜑 |
| issmfdf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfdf.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| issmfdf.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| issmfdf.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
| Ref | Expression |
|---|---|
| issmfdf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmfdf.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
| 2 | 1 | fdmd 6745 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | issmfdf.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
| 4 | 2, 3 | eqsstrd 4017 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 5 | 1 | ffdmd 6765 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 6 | issmfdf.a | . . . 4 ⊢ Ⅎ𝑎𝜑 | |
| 7 | issmfdf.p | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) | |
| 8 | issmfdf.x | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
| 9 | 8 | nfdm 5961 | . . . . . . . . . 10 ⊢ Ⅎ𝑥dom 𝐹 |
| 10 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝐷 | |
| 11 | 9, 10 | rabeqf 3471 | . . . . . . . . 9 ⊢ (dom 𝐹 = 𝐷 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
| 12 | 2, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
| 13 | 2 | oveq2d 7448 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾t dom 𝐹) = (𝑆 ↾t 𝐷)) |
| 14 | 12, 13 | eleq12d 2834 | . . . . . . 7 ⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
| 16 | 7, 15 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 17 | 16 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
| 18 | 6, 17 | ralrimi 3256 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 19 | 4, 5, 18 | 3jca 1128 | . 2 ⊢ (𝜑 → (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
| 20 | issmfdf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 21 | eqid 2736 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
| 22 | 8, 20, 21 | issmff 46754 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)))) |
| 23 | 19, 22 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2889 ∀wral 3060 {crab 3435 ⊆ wss 3950 ∪ cuni 4906 class class class wbr 5142 dom cdm 5684 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 < clt 11296 ↾t crest 17466 SAlgcsalg 46328 SMblFncsmblfn 46715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ioo 13392 df-ico 13394 df-smblfn 46716 |
| This theorem is referenced by: issmfdmpt 46768 smfconst 46769 |
| Copyright terms: Public domain | W3C validator |