Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni3 Structured version   Visualization version   GIF version

Theorem restuni3 41250
Description: The underlying set of a subspace induced by the subspace operator t. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni3.1 (𝜑𝐴𝑉)
restuni3.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
restuni3 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))

Proof of Theorem restuni3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4841 . . . . . . . 8 (𝑥 (𝐴t 𝐵) ↔ ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
21biimpi 217 . . . . . . 7 (𝑥 (𝐴t 𝐵) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
32adantl 482 . . . . . 6 ((𝜑𝑥 (𝐴t 𝐵)) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
4 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴t 𝐵)) → 𝑦 ∈ (𝐴t 𝐵))
5 restuni3.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
6 restuni3.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝑊)
7 elrest 16691 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ (𝐴t 𝐵) ↔ ∃𝑧𝐴 𝑦 = (𝑧𝐵)))
85, 6, 7syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐴t 𝐵) ↔ ∃𝑧𝐴 𝑦 = (𝑧𝐵)))
98adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴t 𝐵)) → (𝑦 ∈ (𝐴t 𝐵) ↔ ∃𝑧𝐴 𝑦 = (𝑧𝐵)))
104, 9mpbid 233 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴t 𝐵)) → ∃𝑧𝐴 𝑦 = (𝑧𝐵))
11103adant3 1126 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → ∃𝑧𝐴 𝑦 = (𝑧𝐵))
12 simpl 483 . . . . . . . . . . . . . 14 ((𝑥𝑦𝑦 = (𝑧𝐵)) → 𝑥𝑦)
13 simpr 485 . . . . . . . . . . . . . 14 ((𝑥𝑦𝑦 = (𝑧𝐵)) → 𝑦 = (𝑧𝐵))
1412, 13eleqtrd 2920 . . . . . . . . . . . . 13 ((𝑥𝑦𝑦 = (𝑧𝐵)) → 𝑥 ∈ (𝑧𝐵))
1514ex 413 . . . . . . . . . . . 12 (𝑥𝑦 → (𝑦 = (𝑧𝐵) → 𝑥 ∈ (𝑧𝐵)))
16153ad2ant3 1129 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → (𝑦 = (𝑧𝐵) → 𝑥 ∈ (𝑧𝐵)))
1716reximdv 3278 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → (∃𝑧𝐴 𝑦 = (𝑧𝐵) → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵)))
1811, 17mpd 15 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵))
19183exp 1113 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐴t 𝐵) → (𝑥𝑦 → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵))))
2019rexlimdv 3288 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦 → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵)))
2120adantr 481 . . . . . 6 ((𝜑𝑥 (𝐴t 𝐵)) → (∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦 → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵)))
223, 21mpd 15 . . . . 5 ((𝜑𝑥 (𝐴t 𝐵)) → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵))
23 elinel1 4176 . . . . . . . . . . 11 (𝑥 ∈ (𝑧𝐵) → 𝑥𝑧)
2423adantl 482 . . . . . . . . . 10 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥𝑧)
25 simpl 483 . . . . . . . . . 10 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑧𝐴)
26 elunii 4842 . . . . . . . . . 10 ((𝑥𝑧𝑧𝐴) → 𝑥 𝐴)
2724, 25, 26syl2anc 584 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥 𝐴)
28 elinel2 4177 . . . . . . . . . 10 (𝑥 ∈ (𝑧𝐵) → 𝑥𝐵)
2928adantl 482 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥𝐵)
3027, 29elind 4175 . . . . . . . 8 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥 ∈ ( 𝐴𝐵))
3130ex 413 . . . . . . 7 (𝑧𝐴 → (𝑥 ∈ (𝑧𝐵) → 𝑥 ∈ ( 𝐴𝐵)))
3231adantl 482 . . . . . 6 (((𝜑𝑥 (𝐴t 𝐵)) ∧ 𝑧𝐴) → (𝑥 ∈ (𝑧𝐵) → 𝑥 ∈ ( 𝐴𝐵)))
3332rexlimdva 3289 . . . . 5 ((𝜑𝑥 (𝐴t 𝐵)) → (∃𝑧𝐴 𝑥 ∈ (𝑧𝐵) → 𝑥 ∈ ( 𝐴𝐵)))
3422, 33mpd 15 . . . 4 ((𝜑𝑥 (𝐴t 𝐵)) → 𝑥 ∈ ( 𝐴𝐵))
3534ralrimiva 3187 . . 3 (𝜑 → ∀𝑥 (𝐴t 𝐵)𝑥 ∈ ( 𝐴𝐵))
36 dfss3 3960 . . 3 ( (𝐴t 𝐵) ⊆ ( 𝐴𝐵) ↔ ∀𝑥 (𝐴t 𝐵)𝑥 ∈ ( 𝐴𝐵))
3735, 36sylibr 235 . 2 (𝜑 (𝐴t 𝐵) ⊆ ( 𝐴𝐵))
38 elinel1 4176 . . . . . 6 (𝑥 ∈ ( 𝐴𝐵) → 𝑥 𝐴)
39 eluni2 4841 . . . . . 6 (𝑥 𝐴 ↔ ∃𝑧𝐴 𝑥𝑧)
4038, 39sylib 219 . . . . 5 (𝑥 ∈ ( 𝐴𝐵) → ∃𝑧𝐴 𝑥𝑧)
4140adantl 482 . . . 4 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → ∃𝑧𝐴 𝑥𝑧)
425adantr 481 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐴𝑉)
436adantr 481 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑊)
44 simpr 485 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
45 eqid 2826 . . . . . . . . . 10 (𝑧𝐵) = (𝑧𝐵)
4642, 43, 44, 45elrestd 41240 . . . . . . . . 9 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ (𝐴t 𝐵))
47463adant3 1126 . . . . . . . 8 ((𝜑𝑧𝐴𝑥𝑧) → (𝑧𝐵) ∈ (𝐴t 𝐵))
48473adant1r 1171 . . . . . . 7 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → (𝑧𝐵) ∈ (𝐴t 𝐵))
49 simp3 1132 . . . . . . . 8 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥𝑧)
50 simp1r 1192 . . . . . . . . 9 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥 ∈ ( 𝐴𝐵))
51 elinel2 4177 . . . . . . . . 9 (𝑥 ∈ ( 𝐴𝐵) → 𝑥𝐵)
5250, 51syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥𝐵)
53 simpl 483 . . . . . . . . 9 ((𝑥𝑧𝑥𝐵) → 𝑥𝑧)
54 simpr 485 . . . . . . . . 9 ((𝑥𝑧𝑥𝐵) → 𝑥𝐵)
5553, 54elind 4175 . . . . . . . 8 ((𝑥𝑧𝑥𝐵) → 𝑥 ∈ (𝑧𝐵))
5649, 52, 55syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥 ∈ (𝑧𝐵))
57 eleq2 2906 . . . . . . . 8 (𝑦 = (𝑧𝐵) → (𝑥𝑦𝑥 ∈ (𝑧𝐵)))
5857rspcev 3627 . . . . . . 7 (((𝑧𝐵) ∈ (𝐴t 𝐵) ∧ 𝑥 ∈ (𝑧𝐵)) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
5948, 56, 58syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
60593exp 1113 . . . . 5 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → (𝑧𝐴 → (𝑥𝑧 → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)))
6160rexlimdv 3288 . . . 4 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → (∃𝑧𝐴 𝑥𝑧 → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦))
6241, 61mpd 15 . . 3 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
6362, 1sylibr 235 . 2 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → 𝑥 (𝐴t 𝐵))
6437, 63eqelssd 3992 1 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  wrex 3144  cin 3939  wss 3940   cuni 4837  (class class class)co 7148  t crest 16684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-rest 16686
This theorem is referenced by:  restuni4  41253  subsalsal  42508
  Copyright terms: Public domain W3C validator