Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restuni3 Structured version   Visualization version   GIF version

Theorem restuni3 41753
Description: The underlying set of a subspace induced by the subspace operator t. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
restuni3.1 (𝜑𝐴𝑉)
restuni3.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
restuni3 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))

Proof of Theorem restuni3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4804 . . . . . . . 8 (𝑥 (𝐴t 𝐵) ↔ ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
21biimpi 219 . . . . . . 7 (𝑥 (𝐴t 𝐵) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
32adantl 485 . . . . . 6 ((𝜑𝑥 (𝐴t 𝐵)) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
4 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴t 𝐵)) → 𝑦 ∈ (𝐴t 𝐵))
5 restuni3.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝑉)
6 restuni3.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝑊)
7 elrest 16693 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵𝑊) → (𝑦 ∈ (𝐴t 𝐵) ↔ ∃𝑧𝐴 𝑦 = (𝑧𝐵)))
85, 6, 7syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝐴t 𝐵) ↔ ∃𝑧𝐴 𝑦 = (𝑧𝐵)))
98adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴t 𝐵)) → (𝑦 ∈ (𝐴t 𝐵) ↔ ∃𝑧𝐴 𝑦 = (𝑧𝐵)))
104, 9mpbid 235 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴t 𝐵)) → ∃𝑧𝐴 𝑦 = (𝑧𝐵))
11103adant3 1129 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → ∃𝑧𝐴 𝑦 = (𝑧𝐵))
12 simpl 486 . . . . . . . . . . . . . 14 ((𝑥𝑦𝑦 = (𝑧𝐵)) → 𝑥𝑦)
13 simpr 488 . . . . . . . . . . . . . 14 ((𝑥𝑦𝑦 = (𝑧𝐵)) → 𝑦 = (𝑧𝐵))
1412, 13eleqtrd 2892 . . . . . . . . . . . . 13 ((𝑥𝑦𝑦 = (𝑧𝐵)) → 𝑥 ∈ (𝑧𝐵))
1514ex 416 . . . . . . . . . . . 12 (𝑥𝑦 → (𝑦 = (𝑧𝐵) → 𝑥 ∈ (𝑧𝐵)))
16153ad2ant3 1132 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → (𝑦 = (𝑧𝐵) → 𝑥 ∈ (𝑧𝐵)))
1716reximdv 3232 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → (∃𝑧𝐴 𝑦 = (𝑧𝐵) → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵)))
1811, 17mpd 15 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴t 𝐵) ∧ 𝑥𝑦) → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵))
19183exp 1116 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐴t 𝐵) → (𝑥𝑦 → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵))))
2019rexlimdv 3242 . . . . . . 7 (𝜑 → (∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦 → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵)))
2120adantr 484 . . . . . 6 ((𝜑𝑥 (𝐴t 𝐵)) → (∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦 → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵)))
223, 21mpd 15 . . . . 5 ((𝜑𝑥 (𝐴t 𝐵)) → ∃𝑧𝐴 𝑥 ∈ (𝑧𝐵))
23 elinel1 4122 . . . . . . . . . . 11 (𝑥 ∈ (𝑧𝐵) → 𝑥𝑧)
2423adantl 485 . . . . . . . . . 10 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥𝑧)
25 simpl 486 . . . . . . . . . 10 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑧𝐴)
26 elunii 4805 . . . . . . . . . 10 ((𝑥𝑧𝑧𝐴) → 𝑥 𝐴)
2724, 25, 26syl2anc 587 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥 𝐴)
28 elinel2 4123 . . . . . . . . . 10 (𝑥 ∈ (𝑧𝐵) → 𝑥𝐵)
2928adantl 485 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥𝐵)
3027, 29elind 4121 . . . . . . . 8 ((𝑧𝐴𝑥 ∈ (𝑧𝐵)) → 𝑥 ∈ ( 𝐴𝐵))
3130ex 416 . . . . . . 7 (𝑧𝐴 → (𝑥 ∈ (𝑧𝐵) → 𝑥 ∈ ( 𝐴𝐵)))
3231adantl 485 . . . . . 6 (((𝜑𝑥 (𝐴t 𝐵)) ∧ 𝑧𝐴) → (𝑥 ∈ (𝑧𝐵) → 𝑥 ∈ ( 𝐴𝐵)))
3332rexlimdva 3243 . . . . 5 ((𝜑𝑥 (𝐴t 𝐵)) → (∃𝑧𝐴 𝑥 ∈ (𝑧𝐵) → 𝑥 ∈ ( 𝐴𝐵)))
3422, 33mpd 15 . . . 4 ((𝜑𝑥 (𝐴t 𝐵)) → 𝑥 ∈ ( 𝐴𝐵))
3534ralrimiva 3149 . . 3 (𝜑 → ∀𝑥 (𝐴t 𝐵)𝑥 ∈ ( 𝐴𝐵))
36 dfss3 3903 . . 3 ( (𝐴t 𝐵) ⊆ ( 𝐴𝐵) ↔ ∀𝑥 (𝐴t 𝐵)𝑥 ∈ ( 𝐴𝐵))
3735, 36sylibr 237 . 2 (𝜑 (𝐴t 𝐵) ⊆ ( 𝐴𝐵))
38 elinel1 4122 . . . . . 6 (𝑥 ∈ ( 𝐴𝐵) → 𝑥 𝐴)
39 eluni2 4804 . . . . . 6 (𝑥 𝐴 ↔ ∃𝑧𝐴 𝑥𝑧)
4038, 39sylib 221 . . . . 5 (𝑥 ∈ ( 𝐴𝐵) → ∃𝑧𝐴 𝑥𝑧)
4140adantl 485 . . . 4 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → ∃𝑧𝐴 𝑥𝑧)
425adantr 484 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐴𝑉)
436adantr 484 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝐵𝑊)
44 simpr 488 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
45 eqid 2798 . . . . . . . . . 10 (𝑧𝐵) = (𝑧𝐵)
4642, 43, 44, 45elrestd 41744 . . . . . . . . 9 ((𝜑𝑧𝐴) → (𝑧𝐵) ∈ (𝐴t 𝐵))
47463adant3 1129 . . . . . . . 8 ((𝜑𝑧𝐴𝑥𝑧) → (𝑧𝐵) ∈ (𝐴t 𝐵))
48473adant1r 1174 . . . . . . 7 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → (𝑧𝐵) ∈ (𝐴t 𝐵))
49 simp3 1135 . . . . . . . 8 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥𝑧)
50 simp1r 1195 . . . . . . . . 9 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥 ∈ ( 𝐴𝐵))
51 elinel2 4123 . . . . . . . . 9 (𝑥 ∈ ( 𝐴𝐵) → 𝑥𝐵)
5250, 51syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥𝐵)
53 simpl 486 . . . . . . . . 9 ((𝑥𝑧𝑥𝐵) → 𝑥𝑧)
54 simpr 488 . . . . . . . . 9 ((𝑥𝑧𝑥𝐵) → 𝑥𝐵)
5553, 54elind 4121 . . . . . . . 8 ((𝑥𝑧𝑥𝐵) → 𝑥 ∈ (𝑧𝐵))
5649, 52, 55syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → 𝑥 ∈ (𝑧𝐵))
57 eleq2 2878 . . . . . . . 8 (𝑦 = (𝑧𝐵) → (𝑥𝑦𝑥 ∈ (𝑧𝐵)))
5857rspcev 3571 . . . . . . 7 (((𝑧𝐵) ∈ (𝐴t 𝐵) ∧ 𝑥 ∈ (𝑧𝐵)) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
5948, 56, 58syl2anc 587 . . . . . 6 (((𝜑𝑥 ∈ ( 𝐴𝐵)) ∧ 𝑧𝐴𝑥𝑧) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
60593exp 1116 . . . . 5 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → (𝑧𝐴 → (𝑥𝑧 → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)))
6160rexlimdv 3242 . . . 4 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → (∃𝑧𝐴 𝑥𝑧 → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦))
6241, 61mpd 15 . . 3 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → ∃𝑦 ∈ (𝐴t 𝐵)𝑥𝑦)
6362, 1sylibr 237 . 2 ((𝜑𝑥 ∈ ( 𝐴𝐵)) → 𝑥 (𝐴t 𝐵))
6437, 63eqelssd 3936 1 (𝜑 (𝐴t 𝐵) = ( 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cin 3880  wss 3881   cuni 4800  (class class class)co 7135  t crest 16686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rest 16688
This theorem is referenced by:  restuni4  41756  subsalsal  42999
  Copyright terms: Public domain W3C validator