Step | Hyp | Ref
| Expression |
1 | | eluni2 4843 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ (𝐴
↾t 𝐵)
↔ ∃𝑦 ∈
(𝐴 ↾t
𝐵)𝑥 ∈ 𝑦) |
2 | 1 | biimpi 215 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ (𝐴
↾t 𝐵)
→ ∃𝑦 ∈
(𝐴 ↾t
𝐵)𝑥 ∈ 𝑦) |
3 | 2 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) → ∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦) |
4 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵)) → 𝑦 ∈ (𝐴 ↾t 𝐵)) |
5 | | restuni3.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | | restuni3.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
7 | | elrest 17138 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑦 ∈ (𝐴 ↾t 𝐵) ↔ ∃𝑧 ∈ 𝐴 𝑦 = (𝑧 ∩ 𝐵))) |
8 | 5, 6, 7 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ (𝐴 ↾t 𝐵) ↔ ∃𝑧 ∈ 𝐴 𝑦 = (𝑧 ∩ 𝐵))) |
9 | 8 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵)) → (𝑦 ∈ (𝐴 ↾t 𝐵) ↔ ∃𝑧 ∈ 𝐴 𝑦 = (𝑧 ∩ 𝐵))) |
10 | 4, 9 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵)) → ∃𝑧 ∈ 𝐴 𝑦 = (𝑧 ∩ 𝐵)) |
11 | 10 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵) ∧ 𝑥 ∈ 𝑦) → ∃𝑧 ∈ 𝐴 𝑦 = (𝑧 ∩ 𝐵)) |
12 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 = (𝑧 ∩ 𝐵)) → 𝑥 ∈ 𝑦) |
13 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 = (𝑧 ∩ 𝐵)) → 𝑦 = (𝑧 ∩ 𝐵)) |
14 | 12, 13 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 = (𝑧 ∩ 𝐵)) → 𝑥 ∈ (𝑧 ∩ 𝐵)) |
15 | 14 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑦 → (𝑦 = (𝑧 ∩ 𝐵) → 𝑥 ∈ (𝑧 ∩ 𝐵))) |
16 | 15 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵) ∧ 𝑥 ∈ 𝑦) → (𝑦 = (𝑧 ∩ 𝐵) → 𝑥 ∈ (𝑧 ∩ 𝐵))) |
17 | 16 | reximdv 3202 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵) ∧ 𝑥 ∈ 𝑦) → (∃𝑧 ∈ 𝐴 𝑦 = (𝑧 ∩ 𝐵) → ∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵))) |
18 | 11, 17 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴 ↾t 𝐵) ∧ 𝑥 ∈ 𝑦) → ∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵)) |
19 | 18 | 3exp 1118 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (𝐴 ↾t 𝐵) → (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵)))) |
20 | 19 | rexlimdv 3212 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵))) |
21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) → (∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵))) |
22 | 3, 21 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) → ∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵)) |
23 | | elinel1 4129 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝑧 ∩ 𝐵) → 𝑥 ∈ 𝑧) |
24 | 23 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑥 ∈ (𝑧 ∩ 𝐵)) → 𝑥 ∈ 𝑧) |
25 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑥 ∈ (𝑧 ∩ 𝐵)) → 𝑧 ∈ 𝐴) |
26 | | elunii 4844 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ ∪ 𝐴) |
27 | 24, 25, 26 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑥 ∈ (𝑧 ∩ 𝐵)) → 𝑥 ∈ ∪ 𝐴) |
28 | | elinel2 4130 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑧 ∩ 𝐵) → 𝑥 ∈ 𝐵) |
29 | 28 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑥 ∈ (𝑧 ∩ 𝐵)) → 𝑥 ∈ 𝐵) |
30 | 27, 29 | elind 4128 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑥 ∈ (𝑧 ∩ 𝐵)) → 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) |
31 | 30 | ex 413 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (𝑥 ∈ (𝑧 ∩ 𝐵) → 𝑥 ∈ (∪ 𝐴 ∩ 𝐵))) |
32 | 31 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ (𝑧 ∩ 𝐵) → 𝑥 ∈ (∪ 𝐴 ∩ 𝐵))) |
33 | 32 | rexlimdva 3213 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) → (∃𝑧 ∈ 𝐴 𝑥 ∈ (𝑧 ∩ 𝐵) → 𝑥 ∈ (∪ 𝐴 ∩ 𝐵))) |
34 | 22, 33 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) → 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) |
35 | 34 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ∪ (𝐴 ↾t 𝐵)𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) |
36 | | dfss3 3909 |
. . 3
⊢ (∪ (𝐴
↾t 𝐵)
⊆ (∪ 𝐴 ∩ 𝐵) ↔ ∀𝑥 ∈ ∪ (𝐴 ↾t 𝐵)𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) |
37 | 35, 36 | sylibr 233 |
. 2
⊢ (𝜑 → ∪ (𝐴
↾t 𝐵)
⊆ (∪ 𝐴 ∩ 𝐵)) |
38 | | elinel1 4129 |
. . . . . 6
⊢ (𝑥 ∈ (∪ 𝐴
∩ 𝐵) → 𝑥 ∈ ∪ 𝐴) |
39 | | eluni2 4843 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑧 ∈
𝐴 𝑥 ∈ 𝑧) |
40 | 38, 39 | sylib 217 |
. . . . 5
⊢ (𝑥 ∈ (∪ 𝐴
∩ 𝐵) →
∃𝑧 ∈ 𝐴 𝑥 ∈ 𝑧) |
41 | 40 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) → ∃𝑧 ∈ 𝐴 𝑥 ∈ 𝑧) |
42 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐴 ∈ 𝑉) |
43 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
44 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
45 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑧 ∩ 𝐵) = (𝑧 ∩ 𝐵) |
46 | 42, 43, 44, 45 | elrestd 42658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 ∩ 𝐵) ∈ (𝐴 ↾t 𝐵)) |
47 | 46 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → (𝑧 ∩ 𝐵) ∈ (𝐴 ↾t 𝐵)) |
48 | 47 | 3adant1r 1176 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → (𝑧 ∩ 𝐵) ∈ (𝐴 ↾t 𝐵)) |
49 | | simp3 1137 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ 𝑧) |
50 | | simp1r 1197 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) |
51 | | elinel2 4130 |
. . . . . . . . 9
⊢ (𝑥 ∈ (∪ 𝐴
∩ 𝐵) → 𝑥 ∈ 𝐵) |
52 | 50, 51 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ 𝐵) |
53 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑧) |
54 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
55 | 53, 54 | elind 4128 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝑧 ∩ 𝐵)) |
56 | 49, 52, 55 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ (𝑧 ∩ 𝐵)) |
57 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑦 = (𝑧 ∩ 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (𝑧 ∩ 𝐵))) |
58 | 57 | rspcev 3561 |
. . . . . . 7
⊢ (((𝑧 ∩ 𝐵) ∈ (𝐴 ↾t 𝐵) ∧ 𝑥 ∈ (𝑧 ∩ 𝐵)) → ∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦) |
59 | 48, 56, 58 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑥 ∈ 𝑧) → ∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦) |
60 | 59 | 3exp 1118 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) → (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝑧 → ∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦))) |
61 | 60 | rexlimdv 3212 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) → (∃𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 → ∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦)) |
62 | 41, 61 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) → ∃𝑦 ∈ (𝐴 ↾t 𝐵)𝑥 ∈ 𝑦) |
63 | 62, 1 | sylibr 233 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (∪ 𝐴 ∩ 𝐵)) → 𝑥 ∈ ∪ (𝐴 ↾t 𝐵)) |
64 | 37, 63 | eqelssd 3942 |
1
⊢ (𝜑 → ∪ (𝐴
↾t 𝐵) =
(∪ 𝐴 ∩ 𝐵)) |