Proof of Theorem undifixp
Step | Hyp | Ref
| Expression |
1 | | unexg 7577 |
. . 3
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶) → (𝐹 ∪ 𝐺) ∈ V) |
2 | 1 | 3adant3 1130 |
. 2
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) ∈ V) |
3 | | ixpfn 8649 |
. . . 4
⊢ (𝐺 ∈ X𝑥 ∈
(𝐴 ∖ 𝐵)𝐶 → 𝐺 Fn (𝐴 ∖ 𝐵)) |
4 | | ixpfn 8649 |
. . . 4
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 → 𝐹 Fn 𝐵) |
5 | | 3simpa 1146 |
. . . . . . . 8
⊢ ((𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵)) |
6 | 5 | ancomd 461 |
. . . . . . 7
⊢ ((𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐹 Fn 𝐵 ∧ 𝐺 Fn (𝐴 ∖ 𝐵))) |
7 | | disjdif 4402 |
. . . . . . 7
⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ |
8 | | fnun 6529 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐵 ∧ 𝐺 Fn (𝐴 ∖ 𝐵)) ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (𝐹 ∪ 𝐺) Fn (𝐵 ∪ (𝐴 ∖ 𝐵))) |
9 | 6, 7, 8 | sylancl 585 |
. . . . . 6
⊢ ((𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) Fn (𝐵 ∪ (𝐴 ∖ 𝐵))) |
10 | | undif 4412 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
11 | 10 | biimpi 215 |
. . . . . . . . 9
⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
12 | 11 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐵 ⊆ 𝐴 → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
13 | 12 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴) → 𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵))) |
14 | 13 | fneq2d 6511 |
. . . . . 6
⊢ ((𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ∪ 𝐺) Fn 𝐴 ↔ (𝐹 ∪ 𝐺) Fn (𝐵 ∪ (𝐴 ∖ 𝐵)))) |
15 | 9, 14 | mpbird 256 |
. . . . 5
⊢ ((𝐺 Fn (𝐴 ∖ 𝐵) ∧ 𝐹 Fn 𝐵 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) Fn 𝐴) |
16 | 15 | 3exp 1117 |
. . . 4
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) → (𝐹 Fn 𝐵 → (𝐵 ⊆ 𝐴 → (𝐹 ∪ 𝐺) Fn 𝐴))) |
17 | 3, 4, 16 | syl2imc 41 |
. . 3
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → (𝐵 ⊆ 𝐴 → (𝐹 ∪ 𝐺) Fn 𝐴))) |
18 | 17 | 3imp 1109 |
. 2
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) Fn 𝐴) |
19 | | elixp2 8647 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶)) |
20 | 19 | simp3bi 1145 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) ∈ 𝐶) |
21 | | fndm 6520 |
. . . . . . . . . . . . . 14
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) → dom 𝐺 = (𝐴 ∖ 𝐵)) |
22 | | elndif 4059 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
23 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∖ 𝐵) = dom 𝐺 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ dom 𝐺)) |
24 | 23 | notbid 317 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∖ 𝐵) = dom 𝐺 → (¬ 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺)) |
25 | 24 | eqcoms 2746 |
. . . . . . . . . . . . . . 15
⊢ (dom
𝐺 = (𝐴 ∖ 𝐵) → (¬ 𝑥 ∈ (𝐴 ∖ 𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺)) |
26 | | ndmfv 6786 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ∈ dom 𝐺 → (𝐺‘𝑥) = ∅) |
27 | 25, 26 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ (dom
𝐺 = (𝐴 ∖ 𝐵) → (¬ 𝑥 ∈ (𝐴 ∖ 𝐵) → (𝐺‘𝑥) = ∅)) |
28 | 21, 22, 27 | syl2im 40 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) → (𝑥 ∈ 𝐵 → (𝐺‘𝑥) = ∅)) |
29 | 28 | ralrimiv 3106 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) → ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = ∅) |
30 | | uneq2 4087 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑥) = ∅ → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = ((𝐹‘𝑥) ∪ ∅)) |
31 | | un0 4321 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) ∪ ∅) = (𝐹‘𝑥) |
32 | | eqtr 2761 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = ((𝐹‘𝑥) ∪ ∅) ∧ ((𝐹‘𝑥) ∪ ∅) = (𝐹‘𝑥)) → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (𝐹‘𝑥)) |
33 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) = ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) → ((𝐹‘𝑥) ∈ 𝐶 ↔ ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
34 | 33 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑥) = ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) → ((𝐹‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
35 | 34 | eqcoms 2746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (𝐹‘𝑥) → ((𝐹‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
36 | 32, 35 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = ((𝐹‘𝑥) ∪ ∅) ∧ ((𝐹‘𝑥) ∪ ∅) = (𝐹‘𝑥)) → ((𝐹‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
37 | 30, 31, 36 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑥) = ∅ → ((𝐹‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
38 | 37 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) ∈ 𝐶 → ((𝐺‘𝑥) = ∅ → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
39 | 38 | ral2imi 3081 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐵 (𝐹‘𝑥) ∈ 𝐶 → (∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = ∅ → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
40 | 20, 29, 39 | syl2imc 41 |
. . . . . . . . . . 11
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) → (𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
41 | 3, 40 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ X𝑥 ∈
(𝐴 ∖ 𝐵)𝐶 → (𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
42 | 41 | impcom 407 |
. . . . . . . . 9
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶) → ∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶) |
43 | | elixp2 8647 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ X𝑥 ∈
(𝐴 ∖ 𝐵)𝐶 ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 ∖ 𝐵) ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐵)(𝐺‘𝑥) ∈ 𝐶)) |
44 | 43 | simp3bi 1145 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ X𝑥 ∈
(𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ (𝐴 ∖ 𝐵)(𝐺‘𝑥) ∈ 𝐶) |
45 | | fndm 6520 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵) |
46 | | eldifn 4058 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) |
47 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = dom 𝐹 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ dom 𝐹)) |
48 | 47 | notbid 317 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 = dom 𝐹 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹)) |
49 | | ndmfv 6786 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ∈ dom 𝐹 → (𝐹‘𝑥) = ∅) |
50 | 48, 49 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = dom 𝐹 → (¬ 𝑥 ∈ 𝐵 → (𝐹‘𝑥) = ∅)) |
51 | 50 | eqcoms 2746 |
. . . . . . . . . . . . . 14
⊢ (dom
𝐹 = 𝐵 → (¬ 𝑥 ∈ 𝐵 → (𝐹‘𝑥) = ∅)) |
52 | 45, 46, 51 | syl2im 40 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐵) → (𝐹‘𝑥) = ∅)) |
53 | 52 | ralrimiv 3106 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn 𝐵 → ∀𝑥 ∈ (𝐴 ∖ 𝐵)(𝐹‘𝑥) = ∅) |
54 | | uneq1 4086 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑥) = ∅ → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (∅ ∪ (𝐺‘𝑥))) |
55 | | uncom 4083 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ (𝐺‘𝑥)) = ((𝐺‘𝑥) ∪ ∅) |
56 | | eqtr 2761 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (∅ ∪ (𝐺‘𝑥)) ∧ (∅ ∪ (𝐺‘𝑥)) = ((𝐺‘𝑥) ∪ ∅)) → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = ((𝐺‘𝑥) ∪ ∅)) |
57 | | un0 4321 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑥) ∪ ∅) = (𝐺‘𝑥) |
58 | | eqtr 2761 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = ((𝐺‘𝑥) ∪ ∅) ∧ ((𝐺‘𝑥) ∪ ∅) = (𝐺‘𝑥)) → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (𝐺‘𝑥)) |
59 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑥) = ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) → ((𝐺‘𝑥) ∈ 𝐶 ↔ ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
60 | 59 | biimpd 228 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑥) = ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) → ((𝐺‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
61 | 60 | eqcoms 2746 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (𝐺‘𝑥) → ((𝐺‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
62 | 58, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = ((𝐺‘𝑥) ∪ ∅) ∧ ((𝐺‘𝑥) ∪ ∅) = (𝐺‘𝑥)) → ((𝐺‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
63 | 56, 57, 62 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑥) ∪ (𝐺‘𝑥)) = (∅ ∪ (𝐺‘𝑥)) ∧ (∅ ∪ (𝐺‘𝑥)) = ((𝐺‘𝑥) ∪ ∅)) → ((𝐺‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
64 | 54, 55, 63 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) = ∅ → ((𝐺‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
65 | 64 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑥) ∈ 𝐶 → ((𝐹‘𝑥) = ∅ → ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
66 | 65 | ral2imi 3081 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝐴 ∖ 𝐵)(𝐺‘𝑥) ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∖ 𝐵)(𝐹‘𝑥) = ∅ → ∀𝑥 ∈ (𝐴 ∖ 𝐵)((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
67 | 44, 53, 66 | syl2imc 41 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐵 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ (𝐴 ∖ 𝐵)((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
68 | 4, 67 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ (𝐴 ∖ 𝐵)((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
69 | 68 | imp 406 |
. . . . . . . . 9
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶) → ∀𝑥 ∈ (𝐴 ∖ 𝐵)((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶) |
70 | | ralunb 4121 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝐵 ∪ (𝐴 ∖ 𝐵))((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶 ↔ (∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶 ∧ ∀𝑥 ∈ (𝐴 ∖ 𝐵)((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
71 | 42, 69, 70 | sylanbrc 582 |
. . . . . . . 8
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶) → ∀𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶) |
72 | 71 | ex 412 |
. . . . . . 7
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
73 | | raleq 3333 |
. . . . . . . 8
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
74 | 73 | imbi2d 340 |
. . . . . . 7
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → ((𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶) ↔ (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴 ∖ 𝐵))((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶))) |
75 | 72, 74 | syl5ibr 245 |
. . . . . 6
⊢ (𝐴 = (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶))) |
76 | 75 | eqcoms 2746 |
. . . . 5
⊢ ((𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴 → (𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶))) |
77 | 10, 76 | sylbi 216 |
. . . 4
⊢ (𝐵 ⊆ 𝐴 → (𝐹 ∈ X𝑥 ∈ 𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶))) |
78 | 77 | 3imp231 1111 |
. . 3
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶) |
79 | | df-fn 6421 |
. . . . . 6
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵))) |
80 | | df-fn 6421 |
. . . . . . . 8
⊢ (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵)) |
81 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ dom 𝐹 = 𝐵) → Fun 𝐹) |
82 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) → Fun 𝐺) |
83 | 81, 82 | anim12i 612 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵))) → (Fun 𝐹 ∧ Fun 𝐺)) |
84 | 83 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) ∧ 𝐵 ⊆ 𝐴) → (Fun 𝐹 ∧ Fun 𝐺)) |
85 | | ineq12 4138 |
. . . . . . . . . . . . . . 15
⊢ ((dom
𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) → (dom 𝐹 ∩ dom 𝐺) = (𝐵 ∩ (𝐴 ∖ 𝐵))) |
86 | 85, 7 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
87 | 86 | ad2ant2l 742 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵))) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
88 | 87 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) ∧ 𝐵 ⊆ 𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅) |
89 | | fvun 6840 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹 ∪ 𝐺)‘𝑥) = ((𝐹‘𝑥) ∪ (𝐺‘𝑥))) |
90 | 84, 88, 89 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ∪ 𝐺)‘𝑥) = ((𝐹‘𝑥) ∪ (𝐺‘𝑥))) |
91 | 90 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) ∧ 𝐵 ⊆ 𝐴) → (((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
92 | 91 | ralbidv 3120 |
. . . . . . . . 9
⊢ (((Fun
𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
93 | 92 | 3exp 1117 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ dom 𝐹 = 𝐵) → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) → (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)))) |
94 | 80, 93 | sylbi 216 |
. . . . . . 7
⊢ (𝐹 Fn 𝐵 → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) → (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)))) |
95 | 94 | com12 32 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ dom 𝐺 = (𝐴 ∖ 𝐵)) → (𝐹 Fn 𝐵 → (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)))) |
96 | 79, 95 | sylbi 216 |
. . . . 5
⊢ (𝐺 Fn (𝐴 ∖ 𝐵) → (𝐹 Fn 𝐵 → (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)))) |
97 | 3, 4, 96 | syl2imc 41 |
. . . 4
⊢ (𝐹 ∈ X𝑥 ∈
𝐵 𝐶 → (𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 → (𝐵 ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)))) |
98 | 97 | 3imp 1109 |
. . 3
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) ∪ (𝐺‘𝑥)) ∈ 𝐶)) |
99 | 78, 98 | mpbird 256 |
. 2
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → ∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶) |
100 | | elixp2 8647 |
. 2
⊢ ((𝐹 ∪ 𝐺) ∈ X𝑥 ∈ 𝐴 𝐶 ↔ ((𝐹 ∪ 𝐺) ∈ V ∧ (𝐹 ∪ 𝐺) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝐹 ∪ 𝐺)‘𝑥) ∈ 𝐶)) |
101 | 2, 18, 99, 100 | syl3anbrc 1341 |
1
⊢ ((𝐹 ∈ X𝑥 ∈
𝐵 𝐶 ∧ 𝐺 ∈ X𝑥 ∈ (𝐴 ∖ 𝐵)𝐶 ∧ 𝐵 ⊆ 𝐴) → (𝐹 ∪ 𝐺) ∈ X𝑥 ∈ 𝐴 𝐶) |