MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifixp Structured version   Visualization version   GIF version

Theorem undifixp 8974
Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
undifixp ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem undifixp
StepHypRef Expression
1 unexg 7763 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → (𝐹𝐺) ∈ V)
213adant3 1133 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ V)
3 ixpfn 8943 . . . 4 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐺 Fn (𝐴𝐵))
4 ixpfn 8943 . . . 4 (𝐹X𝑥𝐵 𝐶𝐹 Fn 𝐵)
5 3simpa 1149 . . . . . . . 8 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵))
65ancomd 461 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)))
7 disjdif 4472 . . . . . . 7 (𝐵 ∩ (𝐴𝐵)) = ∅
8 fnun 6682 . . . . . . 7 (((𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)) ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
96, 7, 8sylancl 586 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
10 undif 4482 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1110biimpi 216 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1211eqcomd 2743 . . . . . . . 8 (𝐵𝐴𝐴 = (𝐵 ∪ (𝐴𝐵)))
13123ad2ant3 1136 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
1413fneq2d 6662 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → ((𝐹𝐺) Fn 𝐴 ↔ (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵))))
159, 14mpbird 257 . . . . 5 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
16153exp 1120 . . . 4 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
173, 4, 16syl2imc 41 . . 3 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
18173imp 1111 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
19 elixp2 8941 . . . . . . . . . . . . 13 (𝐹X𝑥𝐵 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
2019simp3bi 1148 . . . . . . . . . . . 12 (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
21 fndm 6671 . . . . . . . . . . . . . 14 (𝐺 Fn (𝐴𝐵) → dom 𝐺 = (𝐴𝐵))
22 elndif 4133 . . . . . . . . . . . . . 14 (𝑥𝐵 → ¬ 𝑥 ∈ (𝐴𝐵))
23 eleq2 2830 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) = dom 𝐺 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ dom 𝐺))
2423notbid 318 . . . . . . . . . . . . . . . 16 ((𝐴𝐵) = dom 𝐺 → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
2524eqcoms 2745 . . . . . . . . . . . . . . 15 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
26 ndmfv 6941 . . . . . . . . . . . . . . 15 𝑥 ∈ dom 𝐺 → (𝐺𝑥) = ∅)
2725, 26biimtrdi 253 . . . . . . . . . . . . . 14 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) → (𝐺𝑥) = ∅))
2821, 22, 27syl2im 40 . . . . . . . . . . . . 13 (𝐺 Fn (𝐴𝐵) → (𝑥𝐵 → (𝐺𝑥) = ∅))
2928ralrimiv 3145 . . . . . . . . . . . 12 (𝐺 Fn (𝐴𝐵) → ∀𝑥𝐵 (𝐺𝑥) = ∅)
30 uneq2 4162 . . . . . . . . . . . . . . 15 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅))
31 un0 4394 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)
32 eqtr 2760 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥))
33 eleq1 2829 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3433biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3534eqcoms 2745 . . . . . . . . . . . . . . . 16 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3632, 35syl 17 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3730, 31, 36sylancl 586 . . . . . . . . . . . . . 14 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3837com12 32 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ 𝐶 → ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3938ral2imi 3085 . . . . . . . . . . . 12 (∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶 → (∀𝑥𝐵 (𝐺𝑥) = ∅ → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4020, 29, 39syl2imc 41 . . . . . . . . . . 11 (𝐺 Fn (𝐴𝐵) → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
413, 40syl 17 . . . . . . . . . 10 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4241impcom 407 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
43 elixp2 8941 . . . . . . . . . . . . 13 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶))
4443simp3bi 1148 . . . . . . . . . . . 12 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶)
45 fndm 6671 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
46 eldifn 4132 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
47 eleq2 2830 . . . . . . . . . . . . . . . . 17 (𝐵 = dom 𝐹 → (𝑥𝐵𝑥 ∈ dom 𝐹))
4847notbid 318 . . . . . . . . . . . . . . . 16 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹))
49 ndmfv 6941 . . . . . . . . . . . . . . . 16 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
5048, 49biimtrdi 253 . . . . . . . . . . . . . . 15 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5150eqcoms 2745 . . . . . . . . . . . . . 14 (dom 𝐹 = 𝐵 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5245, 46, 51syl2im 40 . . . . . . . . . . . . 13 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐴𝐵) → (𝐹𝑥) = ∅))
5352ralrimiv 3145 . . . . . . . . . . . 12 (𝐹 Fn 𝐵 → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅)
54 uneq1 4161 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)))
55 uncom 4158 . . . . . . . . . . . . . . 15 (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)
56 eqtr 2760 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅))
57 un0 4394 . . . . . . . . . . . . . . . 16 ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)
58 eqtr 2760 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥))
59 eleq1 2829 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6059biimpd 229 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6160eqcoms 2745 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6258, 61syl 17 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6356, 57, 62sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6454, 55, 63sylancl 586 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6564com12 32 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6665ral2imi 3085 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶 → (∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6744, 53, 66syl2imc 41 . . . . . . . . . . 11 (𝐹 Fn 𝐵 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
684, 67syl 17 . . . . . . . . . 10 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6968imp 406 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
70 ralunb 4197 . . . . . . . . 9 (∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ (∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ∧ ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7142, 69, 70sylanbrc 583 . . . . . . . 8 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
7271ex 412 . . . . . . 7 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
73 raleq 3323 . . . . . . . 8 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7473imbi2d 340 . . . . . . 7 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → ((𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶) ↔ (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7572, 74imbitrrid 246 . . . . . 6 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7675eqcoms 2745 . . . . 5 ((𝐵 ∪ (𝐴𝐵)) = 𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7710, 76sylbi 217 . . . 4 (𝐵𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
78773imp231 1113 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
79 df-fn 6564 . . . . . 6 (𝐺 Fn (𝐴𝐵) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)))
80 df-fn 6564 . . . . . . . 8 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
81 simpl 482 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → Fun 𝐹)
82 simpl 482 . . . . . . . . . . . . . 14 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → Fun 𝐺)
8381, 82anim12i 613 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (Fun 𝐹 ∧ Fun 𝐺))
84833adant3 1133 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (Fun 𝐹 ∧ Fun 𝐺))
85 ineq12 4215 . . . . . . . . . . . . . . 15 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = (𝐵 ∩ (𝐴𝐵)))
8685, 7eqtrdi 2793 . . . . . . . . . . . . . 14 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
8786ad2ant2l 746 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (dom 𝐹 ∩ dom 𝐺) = ∅)
88873adant3 1133 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)
89 fvun 6999 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9084, 88, 89syl2anc 584 . . . . . . . . . . 11 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9190eleq1d 2826 . . . . . . . . . 10 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9291ralbidv 3178 . . . . . . . . 9 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
93923exp 1120 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9480, 93sylbi 217 . . . . . . 7 (𝐹 Fn 𝐵 → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9594com12 32 . . . . . 6 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9679, 95sylbi 217 . . . . 5 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
973, 4, 96syl2imc 41 . . . 4 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
98973imp 1111 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9978, 98mpbird 257 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶)
100 elixp2 8941 . 2 ((𝐹𝐺) ∈ X𝑥𝐴 𝐶 ↔ ((𝐹𝐺) ∈ V ∧ (𝐹𝐺) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶))
1012, 18, 99, 100syl3anbrc 1344 1 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  dom cdm 5685  Fun wfun 6555   Fn wfn 6556  cfv 6561  Xcixp 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-ixp 8938
This theorem is referenced by:  ptuncnv  23815  ptunhmeo  23816
  Copyright terms: Public domain W3C validator