MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifixp Structured version   Visualization version   GIF version

Theorem undifixp 8930
Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
undifixp ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem undifixp
StepHypRef Expression
1 unexg 7738 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → (𝐹𝐺) ∈ V)
213adant3 1130 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ V)
3 ixpfn 8899 . . . 4 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐺 Fn (𝐴𝐵))
4 ixpfn 8899 . . . 4 (𝐹X𝑥𝐵 𝐶𝐹 Fn 𝐵)
5 3simpa 1146 . . . . . . . 8 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵))
65ancomd 460 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)))
7 disjdif 4470 . . . . . . 7 (𝐵 ∩ (𝐴𝐵)) = ∅
8 fnun 6662 . . . . . . 7 (((𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)) ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
96, 7, 8sylancl 584 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
10 undif 4480 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1110biimpi 215 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1211eqcomd 2736 . . . . . . . 8 (𝐵𝐴𝐴 = (𝐵 ∪ (𝐴𝐵)))
13123ad2ant3 1133 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
1413fneq2d 6642 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → ((𝐹𝐺) Fn 𝐴 ↔ (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵))))
159, 14mpbird 256 . . . . 5 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
16153exp 1117 . . . 4 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
173, 4, 16syl2imc 41 . . 3 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
18173imp 1109 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
19 elixp2 8897 . . . . . . . . . . . . 13 (𝐹X𝑥𝐵 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
2019simp3bi 1145 . . . . . . . . . . . 12 (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
21 fndm 6651 . . . . . . . . . . . . . 14 (𝐺 Fn (𝐴𝐵) → dom 𝐺 = (𝐴𝐵))
22 elndif 4127 . . . . . . . . . . . . . 14 (𝑥𝐵 → ¬ 𝑥 ∈ (𝐴𝐵))
23 eleq2 2820 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) = dom 𝐺 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ dom 𝐺))
2423notbid 317 . . . . . . . . . . . . . . . 16 ((𝐴𝐵) = dom 𝐺 → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
2524eqcoms 2738 . . . . . . . . . . . . . . 15 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
26 ndmfv 6925 . . . . . . . . . . . . . . 15 𝑥 ∈ dom 𝐺 → (𝐺𝑥) = ∅)
2725, 26syl6bi 252 . . . . . . . . . . . . . 14 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) → (𝐺𝑥) = ∅))
2821, 22, 27syl2im 40 . . . . . . . . . . . . 13 (𝐺 Fn (𝐴𝐵) → (𝑥𝐵 → (𝐺𝑥) = ∅))
2928ralrimiv 3143 . . . . . . . . . . . 12 (𝐺 Fn (𝐴𝐵) → ∀𝑥𝐵 (𝐺𝑥) = ∅)
30 uneq2 4156 . . . . . . . . . . . . . . 15 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅))
31 un0 4389 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)
32 eqtr 2753 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥))
33 eleq1 2819 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3433biimpd 228 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3534eqcoms 2738 . . . . . . . . . . . . . . . 16 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3632, 35syl 17 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3730, 31, 36sylancl 584 . . . . . . . . . . . . . 14 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3837com12 32 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ 𝐶 → ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3938ral2imi 3083 . . . . . . . . . . . 12 (∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶 → (∀𝑥𝐵 (𝐺𝑥) = ∅ → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4020, 29, 39syl2imc 41 . . . . . . . . . . 11 (𝐺 Fn (𝐴𝐵) → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
413, 40syl 17 . . . . . . . . . 10 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4241impcom 406 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
43 elixp2 8897 . . . . . . . . . . . . 13 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶))
4443simp3bi 1145 . . . . . . . . . . . 12 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶)
45 fndm 6651 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
46 eldifn 4126 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
47 eleq2 2820 . . . . . . . . . . . . . . . . 17 (𝐵 = dom 𝐹 → (𝑥𝐵𝑥 ∈ dom 𝐹))
4847notbid 317 . . . . . . . . . . . . . . . 16 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹))
49 ndmfv 6925 . . . . . . . . . . . . . . . 16 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
5048, 49syl6bi 252 . . . . . . . . . . . . . . 15 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5150eqcoms 2738 . . . . . . . . . . . . . 14 (dom 𝐹 = 𝐵 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5245, 46, 51syl2im 40 . . . . . . . . . . . . 13 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐴𝐵) → (𝐹𝑥) = ∅))
5352ralrimiv 3143 . . . . . . . . . . . 12 (𝐹 Fn 𝐵 → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅)
54 uneq1 4155 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)))
55 uncom 4152 . . . . . . . . . . . . . . 15 (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)
56 eqtr 2753 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅))
57 un0 4389 . . . . . . . . . . . . . . . 16 ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)
58 eqtr 2753 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥))
59 eleq1 2819 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6059biimpd 228 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6160eqcoms 2738 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6258, 61syl 17 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6356, 57, 62sylancl 584 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6454, 55, 63sylancl 584 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6564com12 32 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6665ral2imi 3083 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶 → (∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6744, 53, 66syl2imc 41 . . . . . . . . . . 11 (𝐹 Fn 𝐵 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
684, 67syl 17 . . . . . . . . . 10 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6968imp 405 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
70 ralunb 4190 . . . . . . . . 9 (∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ (∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ∧ ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7142, 69, 70sylanbrc 581 . . . . . . . 8 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
7271ex 411 . . . . . . 7 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
73 raleq 3320 . . . . . . . 8 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7473imbi2d 339 . . . . . . 7 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → ((𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶) ↔ (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7572, 74imbitrrid 245 . . . . . 6 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7675eqcoms 2738 . . . . 5 ((𝐵 ∪ (𝐴𝐵)) = 𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7710, 76sylbi 216 . . . 4 (𝐵𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
78773imp231 1111 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
79 df-fn 6545 . . . . . 6 (𝐺 Fn (𝐴𝐵) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)))
80 df-fn 6545 . . . . . . . 8 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
81 simpl 481 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → Fun 𝐹)
82 simpl 481 . . . . . . . . . . . . . 14 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → Fun 𝐺)
8381, 82anim12i 611 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (Fun 𝐹 ∧ Fun 𝐺))
84833adant3 1130 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (Fun 𝐹 ∧ Fun 𝐺))
85 ineq12 4206 . . . . . . . . . . . . . . 15 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = (𝐵 ∩ (𝐴𝐵)))
8685, 7eqtrdi 2786 . . . . . . . . . . . . . 14 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
8786ad2ant2l 742 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (dom 𝐹 ∩ dom 𝐺) = ∅)
88873adant3 1130 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)
89 fvun 6980 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9084, 88, 89syl2anc 582 . . . . . . . . . . 11 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9190eleq1d 2816 . . . . . . . . . 10 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9291ralbidv 3175 . . . . . . . . 9 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
93923exp 1117 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9480, 93sylbi 216 . . . . . . 7 (𝐹 Fn 𝐵 → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9594com12 32 . . . . . 6 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9679, 95sylbi 216 . . . . 5 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
973, 4, 96syl2imc 41 . . . 4 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
98973imp 1109 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9978, 98mpbird 256 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶)
100 elixp2 8897 . 2 ((𝐹𝐺) ∈ X𝑥𝐴 𝐶 ↔ ((𝐹𝐺) ∈ V ∧ (𝐹𝐺) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶))
1012, 18, 99, 100syl3anbrc 1341 1 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  dom cdm 5675  Fun wfun 6536   Fn wfn 6537  cfv 6542  Xcixp 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-ixp 8894
This theorem is referenced by:  ptuncnv  23531  ptunhmeo  23532
  Copyright terms: Public domain W3C validator