MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifixp Structured version   Visualization version   GIF version

Theorem undifixp 8868
Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
undifixp ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem undifixp
StepHypRef Expression
1 unexg 7683 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → (𝐹𝐺) ∈ V)
213adant3 1132 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ V)
3 ixpfn 8837 . . . 4 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐺 Fn (𝐴𝐵))
4 ixpfn 8837 . . . 4 (𝐹X𝑥𝐵 𝐶𝐹 Fn 𝐵)
5 3simpa 1148 . . . . . . . 8 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵))
65ancomd 461 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)))
7 disjdif 4425 . . . . . . 7 (𝐵 ∩ (𝐴𝐵)) = ∅
8 fnun 6600 . . . . . . 7 (((𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)) ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
96, 7, 8sylancl 586 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
10 undif 4435 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1110biimpi 216 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1211eqcomd 2735 . . . . . . . 8 (𝐵𝐴𝐴 = (𝐵 ∪ (𝐴𝐵)))
13123ad2ant3 1135 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
1413fneq2d 6580 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → ((𝐹𝐺) Fn 𝐴 ↔ (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵))))
159, 14mpbird 257 . . . . 5 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
16153exp 1119 . . . 4 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
173, 4, 16syl2imc 41 . . 3 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
18173imp 1110 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
19 elixp2 8835 . . . . . . . . . . . . 13 (𝐹X𝑥𝐵 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
2019simp3bi 1147 . . . . . . . . . . . 12 (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
21 fndm 6589 . . . . . . . . . . . . . 14 (𝐺 Fn (𝐴𝐵) → dom 𝐺 = (𝐴𝐵))
22 elndif 4086 . . . . . . . . . . . . . 14 (𝑥𝐵 → ¬ 𝑥 ∈ (𝐴𝐵))
23 eleq2 2817 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) = dom 𝐺 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ dom 𝐺))
2423notbid 318 . . . . . . . . . . . . . . . 16 ((𝐴𝐵) = dom 𝐺 → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
2524eqcoms 2737 . . . . . . . . . . . . . . 15 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
26 ndmfv 6859 . . . . . . . . . . . . . . 15 𝑥 ∈ dom 𝐺 → (𝐺𝑥) = ∅)
2725, 26biimtrdi 253 . . . . . . . . . . . . . 14 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) → (𝐺𝑥) = ∅))
2821, 22, 27syl2im 40 . . . . . . . . . . . . 13 (𝐺 Fn (𝐴𝐵) → (𝑥𝐵 → (𝐺𝑥) = ∅))
2928ralrimiv 3120 . . . . . . . . . . . 12 (𝐺 Fn (𝐴𝐵) → ∀𝑥𝐵 (𝐺𝑥) = ∅)
30 uneq2 4115 . . . . . . . . . . . . . . 15 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅))
31 un0 4347 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)
32 eqtr 2749 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥))
33 eleq1 2816 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3433biimpd 229 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3534eqcoms 2737 . . . . . . . . . . . . . . . 16 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3632, 35syl 17 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3730, 31, 36sylancl 586 . . . . . . . . . . . . . 14 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3837com12 32 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ 𝐶 → ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3938ral2imi 3068 . . . . . . . . . . . 12 (∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶 → (∀𝑥𝐵 (𝐺𝑥) = ∅ → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4020, 29, 39syl2imc 41 . . . . . . . . . . 11 (𝐺 Fn (𝐴𝐵) → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
413, 40syl 17 . . . . . . . . . 10 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4241impcom 407 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
43 elixp2 8835 . . . . . . . . . . . . 13 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶))
4443simp3bi 1147 . . . . . . . . . . . 12 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶)
45 fndm 6589 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
46 eldifn 4085 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
47 eleq2 2817 . . . . . . . . . . . . . . . . 17 (𝐵 = dom 𝐹 → (𝑥𝐵𝑥 ∈ dom 𝐹))
4847notbid 318 . . . . . . . . . . . . . . . 16 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹))
49 ndmfv 6859 . . . . . . . . . . . . . . . 16 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
5048, 49biimtrdi 253 . . . . . . . . . . . . . . 15 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5150eqcoms 2737 . . . . . . . . . . . . . 14 (dom 𝐹 = 𝐵 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5245, 46, 51syl2im 40 . . . . . . . . . . . . 13 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐴𝐵) → (𝐹𝑥) = ∅))
5352ralrimiv 3120 . . . . . . . . . . . 12 (𝐹 Fn 𝐵 → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅)
54 uneq1 4114 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)))
55 uncom 4111 . . . . . . . . . . . . . . 15 (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)
56 eqtr 2749 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅))
57 un0 4347 . . . . . . . . . . . . . . . 16 ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)
58 eqtr 2749 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥))
59 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6059biimpd 229 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6160eqcoms 2737 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6258, 61syl 17 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6356, 57, 62sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6454, 55, 63sylancl 586 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6564com12 32 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6665ral2imi 3068 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶 → (∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6744, 53, 66syl2imc 41 . . . . . . . . . . 11 (𝐹 Fn 𝐵 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
684, 67syl 17 . . . . . . . . . 10 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6968imp 406 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
70 ralunb 4150 . . . . . . . . 9 (∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ (∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ∧ ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7142, 69, 70sylanbrc 583 . . . . . . . 8 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
7271ex 412 . . . . . . 7 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
73 raleq 3287 . . . . . . . 8 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7473imbi2d 340 . . . . . . 7 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → ((𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶) ↔ (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7572, 74imbitrrid 246 . . . . . 6 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7675eqcoms 2737 . . . . 5 ((𝐵 ∪ (𝐴𝐵)) = 𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7710, 76sylbi 217 . . . 4 (𝐵𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
78773imp231 1112 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
79 df-fn 6489 . . . . . 6 (𝐺 Fn (𝐴𝐵) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)))
80 df-fn 6489 . . . . . . . 8 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
81 simpl 482 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → Fun 𝐹)
82 simpl 482 . . . . . . . . . . . . . 14 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → Fun 𝐺)
8381, 82anim12i 613 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (Fun 𝐹 ∧ Fun 𝐺))
84833adant3 1132 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (Fun 𝐹 ∧ Fun 𝐺))
85 ineq12 4168 . . . . . . . . . . . . . . 15 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = (𝐵 ∩ (𝐴𝐵)))
8685, 7eqtrdi 2780 . . . . . . . . . . . . . 14 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
8786ad2ant2l 746 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (dom 𝐹 ∩ dom 𝐺) = ∅)
88873adant3 1132 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)
89 fvun 6917 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9084, 88, 89syl2anc 584 . . . . . . . . . . 11 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9190eleq1d 2813 . . . . . . . . . 10 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9291ralbidv 3152 . . . . . . . . 9 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
93923exp 1119 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9480, 93sylbi 217 . . . . . . 7 (𝐹 Fn 𝐵 → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9594com12 32 . . . . . 6 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9679, 95sylbi 217 . . . . 5 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
973, 4, 96syl2imc 41 . . . 4 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
98973imp 1110 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9978, 98mpbird 257 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶)
100 elixp2 8835 . 2 ((𝐹𝐺) ∈ X𝑥𝐴 𝐶 ↔ ((𝐹𝐺) ∈ V ∧ (𝐹𝐺) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶))
1012, 18, 99, 100syl3anbrc 1344 1 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  dom cdm 5623  Fun wfun 6480   Fn wfn 6481  cfv 6486  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ixp 8832
This theorem is referenced by:  ptuncnv  23710  ptunhmeo  23711
  Copyright terms: Public domain W3C validator