MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifixp Structured version   Visualization version   GIF version

Theorem undifixp 8879
Description: Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
undifixp ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem undifixp
StepHypRef Expression
1 unexg 7688 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → (𝐹𝐺) ∈ V)
213adant3 1132 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ V)
3 ixpfn 8848 . . . 4 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐺 Fn (𝐴𝐵))
4 ixpfn 8848 . . . 4 (𝐹X𝑥𝐵 𝐶𝐹 Fn 𝐵)
5 3simpa 1148 . . . . . . . 8 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵))
65ancomd 462 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)))
7 disjdif 4436 . . . . . . 7 (𝐵 ∩ (𝐴𝐵)) = ∅
8 fnun 6619 . . . . . . 7 (((𝐹 Fn 𝐵𝐺 Fn (𝐴𝐵)) ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
96, 7, 8sylancl 586 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵)))
10 undif 4446 . . . . . . . . . 10 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1110biimpi 215 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
1211eqcomd 2737 . . . . . . . 8 (𝐵𝐴𝐴 = (𝐵 ∪ (𝐴𝐵)))
13123ad2ant3 1135 . . . . . . 7 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → 𝐴 = (𝐵 ∪ (𝐴𝐵)))
1413fneq2d 6601 . . . . . 6 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → ((𝐹𝐺) Fn 𝐴 ↔ (𝐹𝐺) Fn (𝐵 ∪ (𝐴𝐵))))
159, 14mpbird 256 . . . . 5 ((𝐺 Fn (𝐴𝐵) ∧ 𝐹 Fn 𝐵𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
16153exp 1119 . . . 4 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
173, 4, 16syl2imc 41 . . 3 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (𝐹𝐺) Fn 𝐴)))
18173imp 1111 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) Fn 𝐴)
19 elixp2 8846 . . . . . . . . . . . . 13 (𝐹X𝑥𝐵 𝐶 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶))
2019simp3bi 1147 . . . . . . . . . . . 12 (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶)
21 fndm 6610 . . . . . . . . . . . . . 14 (𝐺 Fn (𝐴𝐵) → dom 𝐺 = (𝐴𝐵))
22 elndif 4093 . . . . . . . . . . . . . 14 (𝑥𝐵 → ¬ 𝑥 ∈ (𝐴𝐵))
23 eleq2 2821 . . . . . . . . . . . . . . . . 17 ((𝐴𝐵) = dom 𝐺 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ dom 𝐺))
2423notbid 317 . . . . . . . . . . . . . . . 16 ((𝐴𝐵) = dom 𝐺 → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
2524eqcoms 2739 . . . . . . . . . . . . . . 15 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) ↔ ¬ 𝑥 ∈ dom 𝐺))
26 ndmfv 6882 . . . . . . . . . . . . . . 15 𝑥 ∈ dom 𝐺 → (𝐺𝑥) = ∅)
2725, 26syl6bi 252 . . . . . . . . . . . . . 14 (dom 𝐺 = (𝐴𝐵) → (¬ 𝑥 ∈ (𝐴𝐵) → (𝐺𝑥) = ∅))
2821, 22, 27syl2im 40 . . . . . . . . . . . . 13 (𝐺 Fn (𝐴𝐵) → (𝑥𝐵 → (𝐺𝑥) = ∅))
2928ralrimiv 3138 . . . . . . . . . . . 12 (𝐺 Fn (𝐴𝐵) → ∀𝑥𝐵 (𝐺𝑥) = ∅)
30 uneq2 4122 . . . . . . . . . . . . . . 15 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅))
31 un0 4355 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)
32 eqtr 2754 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥))
33 eleq1 2820 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3433biimpd 228 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3534eqcoms 2739 . . . . . . . . . . . . . . . 16 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐹𝑥) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3632, 35syl 17 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐹𝑥) ∪ ∅) ∧ ((𝐹𝑥) ∪ ∅) = (𝐹𝑥)) → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3730, 31, 36sylancl 586 . . . . . . . . . . . . . 14 ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3837com12 32 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ 𝐶 → ((𝐺𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
3938ral2imi 3084 . . . . . . . . . . . 12 (∀𝑥𝐵 (𝐹𝑥) ∈ 𝐶 → (∀𝑥𝐵 (𝐺𝑥) = ∅ → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4020, 29, 39syl2imc 41 . . . . . . . . . . 11 (𝐺 Fn (𝐴𝐵) → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
413, 40syl 17 . . . . . . . . . 10 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐹X𝑥𝐵 𝐶 → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
4241impcom 408 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
43 elixp2 8846 . . . . . . . . . . . . 13 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴𝐵) ∧ ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶))
4443simp3bi 1147 . . . . . . . . . . . 12 (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶)
45 fndm 6610 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
46 eldifn 4092 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
47 eleq2 2821 . . . . . . . . . . . . . . . . 17 (𝐵 = dom 𝐹 → (𝑥𝐵𝑥 ∈ dom 𝐹))
4847notbid 317 . . . . . . . . . . . . . . . 16 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 ↔ ¬ 𝑥 ∈ dom 𝐹))
49 ndmfv 6882 . . . . . . . . . . . . . . . 16 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
5048, 49syl6bi 252 . . . . . . . . . . . . . . 15 (𝐵 = dom 𝐹 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5150eqcoms 2739 . . . . . . . . . . . . . 14 (dom 𝐹 = 𝐵 → (¬ 𝑥𝐵 → (𝐹𝑥) = ∅))
5245, 46, 51syl2im 40 . . . . . . . . . . . . 13 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐴𝐵) → (𝐹𝑥) = ∅))
5352ralrimiv 3138 . . . . . . . . . . . 12 (𝐹 Fn 𝐵 → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅)
54 uneq1 4121 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)))
55 uncom 4118 . . . . . . . . . . . . . . 15 (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)
56 eqtr 2754 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅))
57 un0 4355 . . . . . . . . . . . . . . . 16 ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)
58 eqtr 2754 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥))
59 eleq1 2820 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6059biimpd 228 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6160eqcoms 2739 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∪ (𝐺𝑥)) = (𝐺𝑥) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6258, 61syl 17 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅) ∧ ((𝐺𝑥) ∪ ∅) = (𝐺𝑥)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6356, 57, 62sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐹𝑥) ∪ (𝐺𝑥)) = (∅ ∪ (𝐺𝑥)) ∧ (∅ ∪ (𝐺𝑥)) = ((𝐺𝑥) ∪ ∅)) → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6454, 55, 63sylancl 586 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ → ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6564com12 32 . . . . . . . . . . . . 13 ((𝐺𝑥) ∈ 𝐶 → ((𝐹𝑥) = ∅ → ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6665ral2imi 3084 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝐴𝐵)(𝐺𝑥) ∈ 𝐶 → (∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = ∅ → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6744, 53, 66syl2imc 41 . . . . . . . . . . 11 (𝐹 Fn 𝐵 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
684, 67syl 17 . . . . . . . . . 10 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
6968imp 407 . . . . . . . . 9 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
70 ralunb 4156 . . . . . . . . 9 (∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ (∀𝑥𝐵 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ∧ ∀𝑥 ∈ (𝐴𝐵)((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7142, 69, 70sylanbrc 583 . . . . . . . 8 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶) → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
7271ex 413 . . . . . . 7 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
73 raleq 3307 . . . . . . . 8 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶 ↔ ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
7473imbi2d 340 . . . . . . 7 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → ((𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶) ↔ (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥 ∈ (𝐵 ∪ (𝐴𝐵))((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7572, 74imbitrrid 245 . . . . . 6 (𝐴 = (𝐵 ∪ (𝐴𝐵)) → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7675eqcoms 2739 . . . . 5 ((𝐵 ∪ (𝐴𝐵)) = 𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
7710, 76sylbi 216 . . . 4 (𝐵𝐴 → (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)))
78773imp231 1113 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶)
79 df-fn 6504 . . . . . 6 (𝐺 Fn (𝐴𝐵) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)))
80 df-fn 6504 . . . . . . . 8 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
81 simpl 483 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → Fun 𝐹)
82 simpl 483 . . . . . . . . . . . . . 14 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → Fun 𝐺)
8381, 82anim12i 613 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (Fun 𝐹 ∧ Fun 𝐺))
84833adant3 1132 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (Fun 𝐹 ∧ Fun 𝐺))
85 ineq12 4172 . . . . . . . . . . . . . . 15 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = (𝐵 ∩ (𝐴𝐵)))
8685, 7eqtrdi 2787 . . . . . . . . . . . . . 14 ((dom 𝐹 = 𝐵 ∧ dom 𝐺 = (𝐴𝐵)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
8786ad2ant2l 744 . . . . . . . . . . . . 13 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵))) → (dom 𝐹 ∩ dom 𝐺) = ∅)
88873adant3 1132 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅)
89 fvun 6936 . . . . . . . . . . . 12 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9084, 88, 89syl2anc 584 . . . . . . . . . . 11 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → ((𝐹𝐺)‘𝑥) = ((𝐹𝑥) ∪ (𝐺𝑥)))
9190eleq1d 2817 . . . . . . . . . 10 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9291ralbidv 3170 . . . . . . . . 9 (((Fun 𝐹 ∧ dom 𝐹 = 𝐵) ∧ (Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) ∧ 𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
93923exp 1119 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = 𝐵) → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9480, 93sylbi 216 . . . . . . 7 (𝐹 Fn 𝐵 → ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9594com12 32 . . . . . 6 ((Fun 𝐺 ∧ dom 𝐺 = (𝐴𝐵)) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
9679, 95sylbi 216 . . . . 5 (𝐺 Fn (𝐴𝐵) → (𝐹 Fn 𝐵 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
973, 4, 96syl2imc 41 . . . 4 (𝐹X𝑥𝐵 𝐶 → (𝐺X𝑥 ∈ (𝐴𝐵)𝐶 → (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))))
98973imp 1111 . . 3 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶 ↔ ∀𝑥𝐴 ((𝐹𝑥) ∪ (𝐺𝑥)) ∈ 𝐶))
9978, 98mpbird 256 . 2 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶)
100 elixp2 8846 . 2 ((𝐹𝐺) ∈ X𝑥𝐴 𝐶 ↔ ((𝐹𝐺) ∈ V ∧ (𝐹𝐺) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐺)‘𝑥) ∈ 𝐶))
1012, 18, 99, 100syl3anbrc 1343 1 ((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  Vcvv 3446  cdif 3910  cun 3911  cin 3912  wss 3913  c0 4287  dom cdm 5638  Fun wfun 6495   Fn wfn 6496  cfv 6501  Xcixp 8842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-fv 6509  df-ixp 8843
This theorem is referenced by:  ptuncnv  23195  ptunhmeo  23196
  Copyright terms: Public domain W3C validator