| Step | Hyp | Ref
| Expression |
| 1 | | hauscmplem.3 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Haus) |
| 2 | | haustop 23274 |
. . . . . . 7
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
| 4 | 3 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝐽 ∈ Top) |
| 5 | | hauscmp.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
| 6 | 5 | topopn 22849 |
. . . . 5
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 7 | 4, 6 | syl 17 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑋 ∈ 𝐽) |
| 8 | | hauscmplem.6 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) |
| 9 | 8 | eldifad 3943 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 10 | 9 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝐴 ∈ 𝑋) |
| 11 | 5 | clstop 23012 |
. . . . . . 7
⊢ (𝐽 ∈ Top →
((cls‘𝐽)‘𝑋) = 𝑋) |
| 12 | 4, 11 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = 𝑋) |
| 13 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∪ 𝑥) |
| 14 | | unieq 4899 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
| 15 | | uni0 4916 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
| 16 | 14, 15 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∅) |
| 17 | 16 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ∪ 𝑥 =
∅) |
| 18 | 13, 17 | sseqtrd 4000 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∅) |
| 19 | | ss0 4382 |
. . . . . . . . 9
⊢ (𝑆 ⊆ ∅ → 𝑆 = ∅) |
| 20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑆 = ∅) |
| 21 | 20 | difeq2d 4106 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → (𝑋 ∖ 𝑆) = (𝑋 ∖ ∅)) |
| 22 | | dif0 4358 |
. . . . . . 7
⊢ (𝑋 ∖ ∅) = 𝑋 |
| 23 | 21, 22 | eqtrdi 2787 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → (𝑋 ∖ 𝑆) = 𝑋) |
| 24 | 12, 23 | eqtr4d 2774 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = (𝑋 ∖ 𝑆)) |
| 25 | | eqimss 4022 |
. . . . 5
⊢
(((cls‘𝐽)‘𝑋) = (𝑋 ∖ 𝑆) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆)) |
| 26 | 24, 25 | syl 17 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆)) |
| 27 | | eleq2 2824 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑋)) |
| 28 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘𝑋)) |
| 29 | 28 | sseq1d 3995 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) ↔ ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆))) |
| 30 | 27, 29 | anbi12d 632 |
. . . . 5
⊢ (𝑧 = 𝑋 → ((𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) ↔ (𝐴 ∈ 𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆)))) |
| 31 | 30 | rspcev 3606 |
. . . 4
⊢ ((𝑋 ∈ 𝐽 ∧ (𝐴 ∈ 𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 32 | 7, 10, 26, 31 | syl12anc 836 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 33 | | elin 3947 |
. . . . . . 7
⊢ (𝑥 ∈ (𝒫 𝑂 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑂 ∧ 𝑥 ∈ Fin)) |
| 34 | | id 22 |
. . . . . . . 8
⊢ (𝑥 ∈ Fin → 𝑥 ∈ Fin) |
| 35 | | elpwi 4587 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝑂 → 𝑥 ⊆ 𝑂) |
| 36 | 35 | sseld 3962 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝑂 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑂)) |
| 37 | | difeq2 4100 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑋 ∖ 𝑦) = (𝑋 ∖ 𝑧)) |
| 38 | 37 | sseq2d 3996 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦) ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) |
| 39 | 38 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)) ↔ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
| 40 | 39 | rexbidv 3165 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)) ↔ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
| 41 | | hauscmplem.2 |
. . . . . . . . . . . 12
⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} |
| 42 | 40, 41 | elrab2 3679 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑂 ↔ (𝑧 ∈ 𝐽 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
| 43 | 42 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑂 → ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) |
| 44 | 36, 43 | syl6 35 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝑂 → (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
| 45 | 44 | ralrimiv 3132 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝑂 → ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) |
| 46 | | eleq2 2824 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑓‘𝑧) → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ (𝑓‘𝑧))) |
| 47 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑓‘𝑧) → ((cls‘𝐽)‘𝑤) = ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 48 | 47 | sseq1d 3995 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑓‘𝑧) → (((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧) ↔ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧))) |
| 49 | 46, 48 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑤 = (𝑓‘𝑧) → ((𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)) ↔ (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
| 50 | 49 | ac6sfi 9297 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
| 51 | 34, 45, 50 | syl2anr 597 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 𝑂 ∧ 𝑥 ∈ Fin) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
| 52 | 33, 51 | sylbi 217 |
. . . . . 6
⊢ (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
| 53 | 52 | ad2antlr 727 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
| 54 | 3 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐽 ∈ Top) |
| 55 | | frn 6718 |
. . . . . . . 8
⊢ (𝑓:𝑥⟶𝐽 → ran 𝑓 ⊆ 𝐽) |
| 56 | 55 | ad2antrl 728 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ran 𝑓 ⊆ 𝐽) |
| 57 | | simprr 772 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅) |
| 58 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧))) → 𝑓:𝑥⟶𝐽) |
| 59 | | fdm 6720 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑥⟶𝐽 → dom 𝑓 = 𝑥) |
| 60 | 59 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ (𝑓:𝑥⟶𝐽 → (dom 𝑓 = ∅ ↔ 𝑥 = ∅)) |
| 61 | | dm0rn0 5909 |
. . . . . . . . . . 11
⊢ (dom
𝑓 = ∅ ↔ ran
𝑓 =
∅) |
| 62 | 60, 61 | bitr3di 286 |
. . . . . . . . . 10
⊢ (𝑓:𝑥⟶𝐽 → (𝑥 = ∅ ↔ ran 𝑓 = ∅)) |
| 63 | 62 | necon3bid 2977 |
. . . . . . . . 9
⊢ (𝑓:𝑥⟶𝐽 → (𝑥 ≠ ∅ ↔ ran 𝑓 ≠ ∅)) |
| 64 | 63 | biimpac 478 |
. . . . . . . 8
⊢ ((𝑥 ≠ ∅ ∧ 𝑓:𝑥⟶𝐽) → ran 𝑓 ≠ ∅) |
| 65 | 57, 58, 64 | syl2an 596 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ran 𝑓 ≠ ∅) |
| 66 | 33 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → 𝑥 ∈ Fin) |
| 67 | 66 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ Fin) |
| 68 | | ffn 6711 |
. . . . . . . . . 10
⊢ (𝑓:𝑥⟶𝐽 → 𝑓 Fn 𝑥) |
| 69 | | dffn4 6801 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 ↔ 𝑓:𝑥–onto→ran 𝑓) |
| 70 | 68, 69 | sylib 218 |
. . . . . . . . 9
⊢ (𝑓:𝑥⟶𝐽 → 𝑓:𝑥–onto→ran 𝑓) |
| 71 | 70 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧))) → 𝑓:𝑥–onto→ran 𝑓) |
| 72 | | fofi 9328 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ 𝑓:𝑥–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 73 | 67, 71, 72 | syl2an 596 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ran 𝑓 ∈ Fin) |
| 74 | | fiinopn 22844 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ((ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ∩ ran 𝑓 ∈ 𝐽)) |
| 75 | 74 | imp 406 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ∩ ran 𝑓 ∈ 𝐽) |
| 76 | 54, 56, 65, 73, 75 | syl13anc 1374 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ ran
𝑓 ∈ 𝐽) |
| 77 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → 𝐴 ∈ (𝑓‘𝑧)) |
| 78 | 77 | ralimi 3074 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧)) |
| 79 | 78 | ad2antll 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧)) |
| 80 | 8 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐴 ∈ (𝑋 ∖ 𝑆)) |
| 81 | | eliin 4977 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑋 ∖ 𝑆) → (𝐴 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧))) |
| 82 | 80, 81 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → (𝐴 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧))) |
| 83 | 79, 82 | mpbird 257 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐴 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧)) |
| 84 | 68 | ad2antrl 728 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝑓 Fn 𝑥) |
| 85 | | fnrnfv 6943 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 → ran 𝑓 = {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 = (𝑓‘𝑧)}) |
| 86 | 85 | inteqd 4932 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 → ∩ ran
𝑓 = ∩ {𝑦
∣ ∃𝑧 ∈
𝑥 𝑦 = (𝑓‘𝑧)}) |
| 87 | | fvex 6894 |
. . . . . . . . . 10
⊢ (𝑓‘𝑧) ∈ V |
| 88 | 87 | dfiin2 5015 |
. . . . . . . . 9
⊢ ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) = ∩ {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 = (𝑓‘𝑧)} |
| 89 | 86, 88 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑥 → ∩ ran
𝑓 = ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧)) |
| 90 | 84, 89 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ ran
𝑓 = ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧)) |
| 91 | 83, 90 | eleqtrrd 2838 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐴 ∈ ∩ ran
𝑓) |
| 92 | 57 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝑥 ≠ ∅) |
| 93 | 3 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → 𝐽 ∈ Top) |
| 94 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑥⟶𝐽 ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ 𝐽) |
| 95 | 94 | adantll 714 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ 𝐽) |
| 96 | | elssuni 4918 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑧) ∈ 𝐽 → (𝑓‘𝑧) ⊆ ∪ 𝐽) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ⊆ ∪ 𝐽) |
| 98 | 97, 5 | sseqtrrdi 4005 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ⊆ 𝑋) |
| 99 | 5 | clscld 22990 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑓‘𝑧) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
| 100 | 93, 98, 99 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
| 101 | 100 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ 𝑓:𝑥⟶𝐽) → ∀𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
| 102 | 101 | adantrr 717 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∀𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
| 103 | | iincld 22982 |
. . . . . . . . 9
⊢ ((𝑥 ≠ ∅ ∧
∀𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
| 104 | 92, 102, 103 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
| 105 | 5 | sscls 22999 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑓‘𝑧) ⊆ 𝑋) → (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 106 | 93, 98, 105 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 107 | 106 | ralrimiva 3133 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ 𝑓:𝑥⟶𝐽) → ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 108 | | ssel 3957 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → (𝑦 ∈ (𝑓‘𝑧) → 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)))) |
| 109 | 108 | ral2imi 3076 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → (∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑓‘𝑧) → ∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)))) |
| 110 | | eliin 4977 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑓‘𝑧))) |
| 111 | 110 | elv 3469 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑓‘𝑧)) |
| 112 | | eliin 4977 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)))) |
| 113 | 112 | elv 3469 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 114 | 109, 111,
113 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → (𝑦 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) → 𝑦 ∈ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)))) |
| 115 | 114 | ssrdv 3969 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 116 | 107, 115 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ 𝑓:𝑥⟶𝐽) → ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 117 | 116 | adantrr 717 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 118 | 90, 117 | eqsstrd 3998 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ ran
𝑓 ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 119 | 5 | clsss2 23015 |
. . . . . . . 8
⊢
((∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽) ∧ ∩ ran
𝑓 ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) → ((cls‘𝐽)‘∩ ran
𝑓) ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 120 | 104, 118,
119 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ((cls‘𝐽)‘∩ ran
𝑓) ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
| 121 | | ssel 3957 |
. . . . . . . . . . . . 13
⊢
(((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)) → 𝑦 ∈ (𝑋 ∖ 𝑧))) |
| 122 | 121 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)) → 𝑦 ∈ (𝑋 ∖ 𝑧))) |
| 123 | 122 | ral2imi 3076 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → (∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)) → ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑋 ∖ 𝑧))) |
| 124 | | eliin 4977 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑋 ∖ 𝑧))) |
| 125 | 124 | elv 3469 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑋 ∖ 𝑧)) |
| 126 | 123, 113,
125 | 3imtr4g 296 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → (𝑦 ∈ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) → 𝑦 ∈ ∩
𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧))) |
| 127 | 126 | ssrdv 3969 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧)) |
| 128 | 127 | ad2antll 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧)) |
| 129 | | iindif2 5058 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ → ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) = (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧)) |
| 130 | 92, 129 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) = (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧)) |
| 131 | | simplrl 776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝑆 ⊆ ∪ 𝑥) |
| 132 | | uniiun 5039 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 =
∪ 𝑧 ∈ 𝑥 𝑧 |
| 133 | 132 | sseq2i 3993 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ ∪ 𝑥
↔ 𝑆 ⊆ ∪ 𝑧 ∈ 𝑥 𝑧) |
| 134 | | sscon 4123 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ ∪ 𝑧 ∈ 𝑥 𝑧 → (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
| 135 | 133, 134 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ ∪ 𝑥
→ (𝑋 ∖ ∪ 𝑧 ∈ 𝑥 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
| 136 | 131, 135 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
| 137 | 130, 136 | eqsstrd 3998 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
| 138 | 128, 137 | sstrd 3974 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑆)) |
| 139 | 120, 138 | sstrd 3974 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ((cls‘𝐽)‘∩ ran
𝑓) ⊆ (𝑋 ∖ 𝑆)) |
| 140 | | eleq2 2824 |
. . . . . . . 8
⊢ (𝑧 = ∩
ran 𝑓 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∩ ran
𝑓)) |
| 141 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑧 = ∩
ran 𝑓 →
((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘∩ ran 𝑓)) |
| 142 | 141 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑧 = ∩
ran 𝑓 →
(((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) ↔ ((cls‘𝐽)‘∩ ran
𝑓) ⊆ (𝑋 ∖ 𝑆))) |
| 143 | 140, 142 | anbi12d 632 |
. . . . . . 7
⊢ (𝑧 = ∩
ran 𝑓 → ((𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) ↔ (𝐴 ∈ ∩ ran
𝑓 ∧ ((cls‘𝐽)‘∩ ran 𝑓) ⊆ (𝑋 ∖ 𝑆)))) |
| 144 | 143 | rspcev 3606 |
. . . . . 6
⊢ ((∩ ran 𝑓 ∈ 𝐽 ∧ (𝐴 ∈ ∩ ran
𝑓 ∧ ((cls‘𝐽)‘∩ ran 𝑓) ⊆ (𝑋 ∖ 𝑆))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 145 | 76, 91, 139, 144 | syl12anc 836 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 146 | 53, 145 | exlimddv 1935 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 147 | 146 | anassrs 467 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 ≠ ∅) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 148 | 32, 147 | pm2.61dane 3020 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
| 149 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ Haus) |
| 150 | | hauscmplem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 151 | 150 | sselda 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
| 152 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 153 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) |
| 154 | 8 | eldifbd 3944 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝐴 ∈ 𝑆) |
| 155 | | nelne2 3031 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
| 156 | 153, 154,
155 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
| 157 | 5 | hausnei 23271 |
. . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ≠ 𝐴)) → ∃𝑦 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅)) |
| 158 | 149, 151,
152, 156, 157 | syl13anc 1374 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∃𝑦 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅)) |
| 159 | | 3anass 1094 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) ↔ (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅))) |
| 160 | | elssuni 4918 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽) |
| 161 | 160, 5 | sseqtrrdi 4005 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ 𝑋) |
| 162 | 161 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → 𝑤 ⊆ 𝑋) |
| 163 | | incom 4189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∩ 𝑤) = (𝑤 ∩ 𝑦) |
| 164 | 163 | eqeq1i 2741 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∩ 𝑤) = ∅ ↔ (𝑤 ∩ 𝑦) = ∅) |
| 165 | | reldisj 4433 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ⊆ 𝑋 → ((𝑤 ∩ 𝑦) = ∅ ↔ 𝑤 ⊆ (𝑋 ∖ 𝑦))) |
| 166 | 164, 165 | bitrid 283 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ⊆ 𝑋 → ((𝑦 ∩ 𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋 ∖ 𝑦))) |
| 167 | 162, 166 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑦 ∩ 𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋 ∖ 𝑦))) |
| 168 | 149, 2 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ Top) |
| 169 | 5 | opncld 22976 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 170 | 168, 169 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 171 | 170 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 172 | 5 | clsss2 23015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽) ∧ 𝑤 ⊆ (𝑋 ∖ 𝑦)) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)) |
| 173 | 172 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽) → (𝑤 ⊆ (𝑋 ∖ 𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) |
| 174 | 171, 173 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → (𝑤 ⊆ (𝑋 ∖ 𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) |
| 175 | 167, 174 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑦 ∩ 𝑤) = ∅ → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) |
| 176 | 175 | anim2d 612 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
| 177 | 176 | anim2d 612 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅)) → (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
| 178 | 159, 177 | biimtrid 242 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
| 179 | 178 | reximdva 3154 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
| 180 | | r19.42v 3177 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐽 (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) ↔ (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
| 181 | 179, 180 | imbitrdi 251 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
| 182 | 181 | reximdva 3154 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑦 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
| 183 | 158, 182 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
| 184 | 41 | unieqi 4900 |
. . . . . . . 8
⊢ ∪ 𝑂 =
∪ {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} |
| 185 | 184 | eleq2i 2827 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ 𝑂
↔ 𝑥 ∈ ∪ {𝑦
∈ 𝐽 ∣
∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))}) |
| 186 | | elunirab 4903 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ {𝑦
∈ 𝐽 ∣
∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
| 187 | 185, 186 | bitri 275 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝑂
↔ ∃𝑦 ∈
𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
| 188 | 183, 187 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ∪ 𝑂) |
| 189 | 188 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑂)) |
| 190 | 189 | ssrdv 3969 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ ∪ 𝑂) |
| 191 | | unieq 4899 |
. . . . . 6
⊢ (𝑧 = 𝑂 → ∪ 𝑧 = ∪
𝑂) |
| 192 | 191 | sseq2d 3996 |
. . . . 5
⊢ (𝑧 = 𝑂 → (𝑆 ⊆ ∪ 𝑧 ↔ 𝑆 ⊆ ∪ 𝑂)) |
| 193 | | pweq 4594 |
. . . . . . 7
⊢ (𝑧 = 𝑂 → 𝒫 𝑧 = 𝒫 𝑂) |
| 194 | 193 | ineq1d 4199 |
. . . . . 6
⊢ (𝑧 = 𝑂 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑂 ∩ Fin)) |
| 195 | 194 | rexeqdv 3310 |
. . . . 5
⊢ (𝑧 = 𝑂 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
| 196 | 192, 195 | imbi12d 344 |
. . . 4
⊢ (𝑧 = 𝑂 → ((𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥) ↔ (𝑆 ⊆ ∪ 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥))) |
| 197 | | hauscmplem.5 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) |
| 198 | 5 | cmpsub 23343 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑧 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥))) |
| 199 | 198 | biimp3a 1471 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → ∀𝑧 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
| 200 | 3, 150, 197, 199 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
| 201 | 41 | ssrab3 4062 |
. . . . 5
⊢ 𝑂 ⊆ 𝐽 |
| 202 | | elpw2g 5308 |
. . . . . 6
⊢ (𝐽 ∈ Haus → (𝑂 ∈ 𝒫 𝐽 ↔ 𝑂 ⊆ 𝐽)) |
| 203 | 1, 202 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑂 ∈ 𝒫 𝐽 ↔ 𝑂 ⊆ 𝐽)) |
| 204 | 201, 203 | mpbiri 258 |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝒫 𝐽) |
| 205 | 196, 200,
204 | rspcdva 3607 |
. . 3
⊢ (𝜑 → (𝑆 ⊆ ∪ 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
| 206 | 190, 205 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥) |
| 207 | 148, 206 | r19.29a 3149 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |