MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmplem Structured version   Visualization version   GIF version

Theorem hauscmplem 23300
Description: Lemma for hauscmp 23301. (Contributed by Mario Carneiro, 27-Nov-2013.)
Hypotheses
Ref Expression
hauscmp.1 𝑋 = 𝐽
hauscmplem.2 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
hauscmplem.3 (𝜑𝐽 ∈ Haus)
hauscmplem.4 (𝜑𝑆𝑋)
hauscmplem.5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
hauscmplem.6 (𝜑𝐴 ∈ (𝑋𝑆))
Assertion
Ref Expression
hauscmplem (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐽,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑤,𝑆,𝑦,𝑧   𝑧,𝑂   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑦,𝑤)

Proof of Theorem hauscmplem
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauscmplem.3 . . . . . . 7 (𝜑𝐽 ∈ Haus)
2 haustop 23225 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
43ad3antrrr 730 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐽 ∈ Top)
5 hauscmp.1 . . . . . 6 𝑋 = 𝐽
65topopn 22800 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
74, 6syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑋𝐽)
8 hauscmplem.6 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝑆))
98eldifad 3929 . . . . 5 (𝜑𝐴𝑋)
109ad3antrrr 730 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐴𝑋)
115clstop 22963 . . . . . . 7 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
124, 11syl 17 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = 𝑋)
13 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 𝑥)
14 unieq 4885 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
15 uni0 4902 . . . . . . . . . . . 12 ∅ = ∅
1614, 15eqtrdi 2781 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1716adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1813, 17sseqtrd 3986 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∅)
19 ss0 4368 . . . . . . . . 9 (𝑆 ⊆ ∅ → 𝑆 = ∅)
2018, 19syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 = ∅)
2120difeq2d 4092 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = (𝑋 ∖ ∅))
22 dif0 4344 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2321, 22eqtrdi 2781 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = 𝑋)
2412, 23eqtr4d 2768 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = (𝑋𝑆))
25 eqimss 4008 . . . . 5 (((cls‘𝐽)‘𝑋) = (𝑋𝑆) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
2624, 25syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
27 eleq2 2818 . . . . . 6 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
28 fveq2 6861 . . . . . . 7 (𝑧 = 𝑋 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘𝑋))
2928sseq1d 3981 . . . . . 6 (𝑧 = 𝑋 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆)))
3027, 29anbi12d 632 . . . . 5 (𝑧 = 𝑋 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))))
3130rspcev 3591 . . . 4 ((𝑋𝐽 ∧ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
327, 10, 26, 31syl12anc 836 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
33 elin 3933 . . . . . . 7 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin))
34 id 22 . . . . . . . 8 (𝑥 ∈ Fin → 𝑥 ∈ Fin)
35 elpwi 4573 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑂𝑥𝑂)
3635sseld 3948 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥𝑧𝑂))
37 difeq2 4086 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
3837sseq2d 3982 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦) ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
3938anbi2d 630 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4039rexbidv 3158 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
41 hauscmplem.2 . . . . . . . . . . . 12 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4240, 41elrab2 3665 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑧𝐽 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4342simprbi 496 . . . . . . . . . 10 (𝑧𝑂 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
4436, 43syl6 35 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4544ralrimiv 3125 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑂 → ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
46 eleq2 2818 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (𝐴𝑤𝐴 ∈ (𝑓𝑧)))
47 fveq2 6861 . . . . . . . . . . 11 (𝑤 = (𝑓𝑧) → ((cls‘𝐽)‘𝑤) = ((cls‘𝐽)‘(𝑓𝑧)))
4847sseq1d 3981 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧) ↔ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))
4946, 48anbi12d 632 . . . . . . . . 9 (𝑤 = (𝑓𝑧) → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)) ↔ (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5049ac6sfi 9238 . . . . . . . 8 ((𝑥 ∈ Fin ∧ ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5134, 45, 50syl2anr 597 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5233, 51sylbi 217 . . . . . 6 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5352ad2antlr 727 . . . . 5 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
543ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐽 ∈ Top)
55 frn 6698 . . . . . . . 8 (𝑓:𝑥𝐽 → ran 𝑓𝐽)
5655ad2antrl 728 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
57 simprr 772 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
58 simpl 482 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥𝐽)
59 fdm 6700 . . . . . . . . . . . 12 (𝑓:𝑥𝐽 → dom 𝑓 = 𝑥)
6059eqeq1d 2732 . . . . . . . . . . 11 (𝑓:𝑥𝐽 → (dom 𝑓 = ∅ ↔ 𝑥 = ∅))
61 dm0rn0 5891 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
6260, 61bitr3di 286 . . . . . . . . . 10 (𝑓:𝑥𝐽 → (𝑥 = ∅ ↔ ran 𝑓 = ∅))
6362necon3bid 2970 . . . . . . . . 9 (𝑓:𝑥𝐽 → (𝑥 ≠ ∅ ↔ ran 𝑓 ≠ ∅))
6463biimpac 478 . . . . . . . 8 ((𝑥 ≠ ∅ ∧ 𝑓:𝑥𝐽) → ran 𝑓 ≠ ∅)
6557, 58, 64syl2an 596 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ≠ ∅)
6633simprbi 496 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → 𝑥 ∈ Fin)
6766ad2antlr 727 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ∈ Fin)
68 ffn 6691 . . . . . . . . . 10 (𝑓:𝑥𝐽𝑓 Fn 𝑥)
69 dffn4 6781 . . . . . . . . . 10 (𝑓 Fn 𝑥𝑓:𝑥onto→ran 𝑓)
7068, 69sylib 218 . . . . . . . . 9 (𝑓:𝑥𝐽𝑓:𝑥onto→ran 𝑓)
7170adantr 480 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥onto→ran 𝑓)
72 fofi 9269 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑓:𝑥onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7367, 71, 72syl2an 596 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ∈ Fin)
74 fiinopn 22795 . . . . . . . 8 (𝐽 ∈ Top → ((ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ran 𝑓𝐽))
7574imp 406 . . . . . . 7 ((𝐽 ∈ Top ∧ (ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ran 𝑓𝐽)
7654, 56, 65, 73, 75syl13anc 1374 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
77 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝐴 ∈ (𝑓𝑧))
7877ralimi 3067 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
7978ad2antll 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
808ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ∈ (𝑋𝑆))
81 eliin 4963 . . . . . . . . 9 (𝐴 ∈ (𝑋𝑆) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8280, 81syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8379, 82mpbird 257 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 𝑧𝑥 (𝑓𝑧))
8468ad2antrl 728 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑓 Fn 𝑥)
85 fnrnfv 6923 . . . . . . . . . 10 (𝑓 Fn 𝑥 → ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
8685inteqd 4918 . . . . . . . . 9 (𝑓 Fn 𝑥 ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
87 fvex 6874 . . . . . . . . . 10 (𝑓𝑧) ∈ V
8887dfiin2 5001 . . . . . . . . 9 𝑧𝑥 (𝑓𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)}
8986, 88eqtr4di 2783 . . . . . . . 8 (𝑓 Fn 𝑥 ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9084, 89syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9183, 90eleqtrrd 2832 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ran 𝑓)
9257adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑥 ≠ ∅)
933ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → 𝐽 ∈ Top)
94 ffvelcdm 7056 . . . . . . . . . . . . . . 15 ((𝑓:𝑥𝐽𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
9594adantll 714 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
96 elssuni 4904 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝐽 → (𝑓𝑧) ⊆ 𝐽)
9795, 96syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝐽)
9897, 5sseqtrrdi 3991 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝑋)
995clscld 22941 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10093, 98, 99syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
101100ralrimiva 3126 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
102101adantrr 717 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
103 iincld 22933 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10492, 102, 103syl2anc 584 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
1055sscls 22950 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
10693, 98, 105syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
107106ralrimiva 3126 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
108 ssel 3943 . . . . . . . . . . . . . 14 ((𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 ∈ (𝑓𝑧) → 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
109108ral2imi 3069 . . . . . . . . . . . . 13 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (∀𝑧𝑥 𝑦 ∈ (𝑓𝑧) → ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
110 eliin 4963 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧)))
111110elv 3455 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧))
112 eliin 4963 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
113112elv 3455 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)))
114109, 111, 1133imtr4g 296 . . . . . . . . . . . 12 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 𝑧𝑥 (𝑓𝑧) → 𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))))
115114ssrdv 3955 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
116107, 115syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
117116adantrr 717 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
11890, 117eqsstrd 3984 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
1195clsss2 22966 . . . . . . . 8 (( 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽) ∧ ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
120104, 118, 119syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
121 ssel 3943 . . . . . . . . . . . . 13 (((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
122121adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
123122ral2imi 3069 . . . . . . . . . . 11 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
124 eliin 4963 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
125124elv 3455 . . . . . . . . . . 11 (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧))
126123, 113, 1253imtr4g 296 . . . . . . . . . 10 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 𝑧𝑥 (𝑋𝑧)))
127126ssrdv 3955 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
128127ad2antll 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
129 iindif2 5044 . . . . . . . . . 10 (𝑥 ≠ ∅ → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
13092, 129syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
131 simplrl 776 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑆 𝑥)
132 uniiun 5025 . . . . . . . . . . . 12 𝑥 = 𝑧𝑥 𝑧
133132sseq2i 3979 . . . . . . . . . . 11 (𝑆 𝑥𝑆 𝑧𝑥 𝑧)
134 sscon 4109 . . . . . . . . . . 11 (𝑆 𝑧𝑥 𝑧 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
135133, 134sylbi 217 . . . . . . . . . 10 (𝑆 𝑥 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
136131, 135syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
137130, 136eqsstrd 3984 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) ⊆ (𝑋𝑆))
138128, 137sstrd 3960 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑆))
139120, 138sstrd 3960 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))
140 eleq2 2818 . . . . . . . 8 (𝑧 = ran 𝑓 → (𝐴𝑧𝐴 ran 𝑓))
141 fveq2 6861 . . . . . . . . 9 (𝑧 = ran 𝑓 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘ ran 𝑓))
142141sseq1d 3981 . . . . . . . 8 (𝑧 = ran 𝑓 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆)))
143140, 142anbi12d 632 . . . . . . 7 (𝑧 = ran 𝑓 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))))
144143rspcev 3591 . . . . . 6 (( ran 𝑓𝐽 ∧ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14576, 91, 139, 144syl12anc 836 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14653, 145exlimddv 1935 . . . 4 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
147146anassrs 467 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 ≠ ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14832, 147pm2.61dane 3013 . 2 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
1491adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐽 ∈ Haus)
150 hauscmplem.4 . . . . . . . . 9 (𝜑𝑆𝑋)
151150sselda 3949 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑋)
1529adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴𝑋)
153 id 22 . . . . . . . . 9 (𝑥𝑆𝑥𝑆)
1548eldifbd 3930 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝑆)
155 nelne2 3024 . . . . . . . . 9 ((𝑥𝑆 ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
156153, 154, 155syl2anr 597 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝐴)
1575hausnei 23222 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥𝑋𝐴𝑋𝑥𝐴)) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
158149, 151, 152, 156, 157syl13anc 1374 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
159 3anass 1094 . . . . . . . . . . 11 ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) ↔ (𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)))
160 elssuni 4904 . . . . . . . . . . . . . . . . 17 (𝑤𝐽𝑤 𝐽)
161160, 5sseqtrrdi 3991 . . . . . . . . . . . . . . . 16 (𝑤𝐽𝑤𝑋)
162161adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → 𝑤𝑋)
163 incom 4175 . . . . . . . . . . . . . . . . 17 (𝑦𝑤) = (𝑤𝑦)
164163eqeq1i 2735 . . . . . . . . . . . . . . . 16 ((𝑦𝑤) = ∅ ↔ (𝑤𝑦) = ∅)
165 reldisj 4419 . . . . . . . . . . . . . . . 16 (𝑤𝑋 → ((𝑤𝑦) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
166164, 165bitrid 283 . . . . . . . . . . . . . . 15 (𝑤𝑋 → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
167162, 166syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
168149, 2syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐽 ∈ Top)
1695opncld 22927 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
170168, 169sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
171170adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
1725clsss2 22966 . . . . . . . . . . . . . . . 16 (((𝑋𝑦) ∈ (Clsd‘𝐽) ∧ 𝑤 ⊆ (𝑋𝑦)) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))
173172ex 412 . . . . . . . . . . . . . . 15 ((𝑋𝑦) ∈ (Clsd‘𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
174171, 173syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
175167, 174sylbid 240 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
176175anim2d 612 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
177176anim2d 612 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
178159, 177biimtrid 242 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
179178reximdva 3147 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
180 r19.42v 3170 . . . . . . . . 9 (∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))) ↔ (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
181179, 180imbitrdi 251 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
182181reximdva 3147 . . . . . . 7 ((𝜑𝑥𝑆) → (∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
183158, 182mpd 15 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
18441unieqi 4886 . . . . . . . 8 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
185184eleq2i 2821 . . . . . . 7 (𝑥 𝑂𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))})
186 elunirab 4889 . . . . . . 7 (𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
187185, 186bitri 275 . . . . . 6 (𝑥 𝑂 ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
188183, 187sylibr 234 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 𝑂)
189188ex 412 . . . 4 (𝜑 → (𝑥𝑆𝑥 𝑂))
190189ssrdv 3955 . . 3 (𝜑𝑆 𝑂)
191 unieq 4885 . . . . . 6 (𝑧 = 𝑂 𝑧 = 𝑂)
192191sseq2d 3982 . . . . 5 (𝑧 = 𝑂 → (𝑆 𝑧𝑆 𝑂))
193 pweq 4580 . . . . . . 7 (𝑧 = 𝑂 → 𝒫 𝑧 = 𝒫 𝑂)
194193ineq1d 4185 . . . . . 6 (𝑧 = 𝑂 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
195194rexeqdv 3302 . . . . 5 (𝑧 = 𝑂 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
196192, 195imbi12d 344 . . . 4 (𝑧 = 𝑂 → ((𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥) ↔ (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)))
197 hauscmplem.5 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
1985cmpsub 23294 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥)))
199198biimp3a 1471 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
2003, 150, 197, 199syl3anc 1373 . . . 4 (𝜑 → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
20141ssrab3 4048 . . . . 5 𝑂𝐽
202 elpw2g 5291 . . . . . 6 (𝐽 ∈ Haus → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
2031, 202syl 17 . . . . 5 (𝜑 → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
204201, 203mpbiri 258 . . . 4 (𝜑𝑂 ∈ 𝒫 𝐽)
205196, 200, 204rspcdva 3592 . . 3 (𝜑 → (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
206190, 205mpd 15 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)
207148, 206r19.29a 3142 1 (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   cint 4913   ciun 4958   ciin 4959  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  Fincfn 8921  t crest 17390  Topctop 22787  Clsdccld 22910  clsccl 22912  Hauscha 23202  Compccmp 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-en 8922  df-dom 8923  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-cls 22915  df-haus 23209  df-cmp 23281
This theorem is referenced by:  hauscmp  23301  hausllycmp  23388
  Copyright terms: Public domain W3C validator