MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmplem Structured version   Visualization version   GIF version

Theorem hauscmplem 21733
Description: Lemma for hauscmp 21734. (Contributed by Mario Carneiro, 27-Nov-2013.)
Hypotheses
Ref Expression
hauscmp.1 𝑋 = 𝐽
hauscmplem.2 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
hauscmplem.3 (𝜑𝐽 ∈ Haus)
hauscmplem.4 (𝜑𝑆𝑋)
hauscmplem.5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
hauscmplem.6 (𝜑𝐴 ∈ (𝑋𝑆))
Assertion
Ref Expression
hauscmplem (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐽,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑤,𝑆,𝑦,𝑧   𝑧,𝑂   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑦,𝑤)

Proof of Theorem hauscmplem
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauscmplem.3 . . . . . . 7 (𝜑𝐽 ∈ Haus)
2 haustop 21658 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
43ad3antrrr 718 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐽 ∈ Top)
5 hauscmp.1 . . . . . 6 𝑋 = 𝐽
65topopn 21233 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
74, 6syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑋𝐽)
8 hauscmplem.6 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝑆))
98eldifad 3843 . . . . 5 (𝜑𝐴𝑋)
109ad3antrrr 718 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐴𝑋)
115clstop 21396 . . . . . . 7 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
124, 11syl 17 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = 𝑋)
13 simplr 757 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 𝑥)
14 unieq 4725 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
15 uni0 4744 . . . . . . . . . . . 12 ∅ = ∅
1614, 15syl6eq 2832 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1716adantl 474 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1813, 17sseqtrd 3899 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∅)
19 ss0 4241 . . . . . . . . 9 (𝑆 ⊆ ∅ → 𝑆 = ∅)
2018, 19syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 = ∅)
2120difeq2d 3991 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = (𝑋 ∖ ∅))
22 dif0 4221 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2321, 22syl6eq 2832 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = 𝑋)
2412, 23eqtr4d 2819 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = (𝑋𝑆))
25 eqimss 3915 . . . . 5 (((cls‘𝐽)‘𝑋) = (𝑋𝑆) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
2624, 25syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
27 eleq2 2856 . . . . . 6 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
28 fveq2 6504 . . . . . . 7 (𝑧 = 𝑋 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘𝑋))
2928sseq1d 3890 . . . . . 6 (𝑧 = 𝑋 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆)))
3027, 29anbi12d 622 . . . . 5 (𝑧 = 𝑋 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))))
3130rspcev 3537 . . . 4 ((𝑋𝐽 ∧ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
327, 10, 26, 31syl12anc 825 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
33 elin 4060 . . . . . . 7 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin))
34 id 22 . . . . . . . 8 (𝑥 ∈ Fin → 𝑥 ∈ Fin)
35 elpwi 4435 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑂𝑥𝑂)
3635sseld 3859 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥𝑧𝑂))
37 difeq2 3985 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
3837sseq2d 3891 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦) ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
3938anbi2d 620 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4039rexbidv 3244 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
41 hauscmplem.2 . . . . . . . . . . . 12 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4240, 41elrab2 3601 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑧𝐽 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4342simprbi 489 . . . . . . . . . 10 (𝑧𝑂 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
4436, 43syl6 35 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4544ralrimiv 3133 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑂 → ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
46 eleq2 2856 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (𝐴𝑤𝐴 ∈ (𝑓𝑧)))
47 fveq2 6504 . . . . . . . . . . 11 (𝑤 = (𝑓𝑧) → ((cls‘𝐽)‘𝑤) = ((cls‘𝐽)‘(𝑓𝑧)))
4847sseq1d 3890 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧) ↔ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))
4946, 48anbi12d 622 . . . . . . . . 9 (𝑤 = (𝑓𝑧) → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)) ↔ (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5049ac6sfi 8563 . . . . . . . 8 ((𝑥 ∈ Fin ∧ ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5134, 45, 50syl2anr 588 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5233, 51sylbi 209 . . . . . 6 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5352ad2antlr 715 . . . . 5 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
543ad3antrrr 718 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐽 ∈ Top)
55 frn 6355 . . . . . . . 8 (𝑓:𝑥𝐽 → ran 𝑓𝐽)
5655ad2antrl 716 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
57 simprr 761 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
58 simpl 475 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥𝐽)
59 dm0rn0 5645 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
60 fdm 6357 . . . . . . . . . . . 12 (𝑓:𝑥𝐽 → dom 𝑓 = 𝑥)
6160eqeq1d 2782 . . . . . . . . . . 11 (𝑓:𝑥𝐽 → (dom 𝑓 = ∅ ↔ 𝑥 = ∅))
6259, 61syl5rbbr 278 . . . . . . . . . 10 (𝑓:𝑥𝐽 → (𝑥 = ∅ ↔ ran 𝑓 = ∅))
6362necon3bid 3013 . . . . . . . . 9 (𝑓:𝑥𝐽 → (𝑥 ≠ ∅ ↔ ran 𝑓 ≠ ∅))
6463biimpac 471 . . . . . . . 8 ((𝑥 ≠ ∅ ∧ 𝑓:𝑥𝐽) → ran 𝑓 ≠ ∅)
6557, 58, 64syl2an 587 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ≠ ∅)
6633simprbi 489 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → 𝑥 ∈ Fin)
6766ad2antlr 715 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ∈ Fin)
68 ffn 6349 . . . . . . . . . 10 (𝑓:𝑥𝐽𝑓 Fn 𝑥)
69 dffn4 6430 . . . . . . . . . 10 (𝑓 Fn 𝑥𝑓:𝑥onto→ran 𝑓)
7068, 69sylib 210 . . . . . . . . 9 (𝑓:𝑥𝐽𝑓:𝑥onto→ran 𝑓)
7170adantr 473 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥onto→ran 𝑓)
72 fofi 8611 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑓:𝑥onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7367, 71, 72syl2an 587 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ∈ Fin)
74 fiinopn 21228 . . . . . . . 8 (𝐽 ∈ Top → ((ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ran 𝑓𝐽))
7574imp 398 . . . . . . 7 ((𝐽 ∈ Top ∧ (ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ran 𝑓𝐽)
7654, 56, 65, 73, 75syl13anc 1353 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
77 simpl 475 . . . . . . . . . 10 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝐴 ∈ (𝑓𝑧))
7877ralimi 3112 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
7978ad2antll 717 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
808ad3antrrr 718 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ∈ (𝑋𝑆))
81 eliin 4802 . . . . . . . . 9 (𝐴 ∈ (𝑋𝑆) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8280, 81syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8379, 82mpbird 249 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 𝑧𝑥 (𝑓𝑧))
8468ad2antrl 716 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑓 Fn 𝑥)
85 fnrnfv 6560 . . . . . . . . . 10 (𝑓 Fn 𝑥 → ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
8685inteqd 4759 . . . . . . . . 9 (𝑓 Fn 𝑥 ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
87 fvex 6517 . . . . . . . . . 10 (𝑓𝑧) ∈ V
8887dfiin2 4834 . . . . . . . . 9 𝑧𝑥 (𝑓𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)}
8986, 88syl6eqr 2834 . . . . . . . 8 (𝑓 Fn 𝑥 ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9084, 89syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9183, 90eleqtrrd 2871 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ran 𝑓)
9257adantr 473 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑥 ≠ ∅)
933ad4antr 720 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → 𝐽 ∈ Top)
94 ffvelrn 6680 . . . . . . . . . . . . . . 15 ((𝑓:𝑥𝐽𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
9594adantll 702 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
96 elssuni 4746 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝐽 → (𝑓𝑧) ⊆ 𝐽)
9795, 96syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝐽)
9897, 5syl6sseqr 3910 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝑋)
995clscld 21374 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10093, 98, 99syl2anc 576 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
101100ralrimiva 3134 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
102101adantrr 705 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
103 iincld 21366 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10492, 102, 103syl2anc 576 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
1055sscls 21383 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
10693, 98, 105syl2anc 576 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
107106ralrimiva 3134 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
108 ssel 3854 . . . . . . . . . . . . . 14 ((𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 ∈ (𝑓𝑧) → 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
109108ral2imi 3108 . . . . . . . . . . . . 13 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (∀𝑧𝑥 𝑦 ∈ (𝑓𝑧) → ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
110 eliin 4802 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧)))
111110elv 3422 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧))
112 eliin 4802 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
113112elv 3422 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)))
114109, 111, 1133imtr4g 288 . . . . . . . . . . . 12 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 𝑧𝑥 (𝑓𝑧) → 𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))))
115114ssrdv 3866 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
116107, 115syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
117116adantrr 705 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
11890, 117eqsstrd 3897 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
1195clsss2 21399 . . . . . . . 8 (( 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽) ∧ ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
120104, 118, 119syl2anc 576 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
121 ssel 3854 . . . . . . . . . . . . 13 (((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
122121adantl 474 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
123122ral2imi 3108 . . . . . . . . . . 11 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
124 eliin 4802 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
125124elv 3422 . . . . . . . . . . 11 (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧))
126123, 113, 1253imtr4g 288 . . . . . . . . . 10 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 𝑧𝑥 (𝑋𝑧)))
127126ssrdv 3866 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
128127ad2antll 717 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
129 iindif2 4870 . . . . . . . . . 10 (𝑥 ≠ ∅ → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
13092, 129syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
131 simplrl 765 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑆 𝑥)
132 uniiun 4853 . . . . . . . . . . . 12 𝑥 = 𝑧𝑥 𝑧
133132sseq2i 3888 . . . . . . . . . . 11 (𝑆 𝑥𝑆 𝑧𝑥 𝑧)
134 sscon 4007 . . . . . . . . . . 11 (𝑆 𝑧𝑥 𝑧 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
135133, 134sylbi 209 . . . . . . . . . 10 (𝑆 𝑥 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
136131, 135syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
137130, 136eqsstrd 3897 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) ⊆ (𝑋𝑆))
138128, 137sstrd 3870 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑆))
139120, 138sstrd 3870 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))
140 eleq2 2856 . . . . . . . 8 (𝑧 = ran 𝑓 → (𝐴𝑧𝐴 ran 𝑓))
141 fveq2 6504 . . . . . . . . 9 (𝑧 = ran 𝑓 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘ ran 𝑓))
142141sseq1d 3890 . . . . . . . 8 (𝑧 = ran 𝑓 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆)))
143140, 142anbi12d 622 . . . . . . 7 (𝑧 = ran 𝑓 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))))
144143rspcev 3537 . . . . . 6 (( ran 𝑓𝐽 ∧ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14576, 91, 139, 144syl12anc 825 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14653, 145exlimddv 1895 . . . 4 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
147146anassrs 460 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 ≠ ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14832, 147pm2.61dane 3057 . 2 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
1491adantr 473 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐽 ∈ Haus)
150 hauscmplem.4 . . . . . . . . 9 (𝜑𝑆𝑋)
151150sselda 3860 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑋)
1529adantr 473 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴𝑋)
153 id 22 . . . . . . . . 9 (𝑥𝑆𝑥𝑆)
1548eldifbd 3844 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝑆)
155 nelne2 3068 . . . . . . . . 9 ((𝑥𝑆 ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
156153, 154, 155syl2anr 588 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝐴)
1575hausnei 21655 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥𝑋𝐴𝑋𝑥𝐴)) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
158149, 151, 152, 156, 157syl13anc 1353 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
159 3anass 1077 . . . . . . . . . . 11 ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) ↔ (𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)))
160 elssuni 4746 . . . . . . . . . . . . . . . . 17 (𝑤𝐽𝑤 𝐽)
161160, 5syl6sseqr 3910 . . . . . . . . . . . . . . . 16 (𝑤𝐽𝑤𝑋)
162161adantl 474 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → 𝑤𝑋)
163 incom 4069 . . . . . . . . . . . . . . . . 17 (𝑦𝑤) = (𝑤𝑦)
164163eqeq1i 2785 . . . . . . . . . . . . . . . 16 ((𝑦𝑤) = ∅ ↔ (𝑤𝑦) = ∅)
165 reldisj 4288 . . . . . . . . . . . . . . . 16 (𝑤𝑋 → ((𝑤𝑦) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
166164, 165syl5bb 275 . . . . . . . . . . . . . . 15 (𝑤𝑋 → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
167162, 166syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
168149, 2syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐽 ∈ Top)
1695opncld 21360 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
170168, 169sylan 572 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
171170adantr 473 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
1725clsss2 21399 . . . . . . . . . . . . . . . 16 (((𝑋𝑦) ∈ (Clsd‘𝐽) ∧ 𝑤 ⊆ (𝑋𝑦)) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))
173172ex 405 . . . . . . . . . . . . . . 15 ((𝑋𝑦) ∈ (Clsd‘𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
174171, 173syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
175167, 174sylbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
176175anim2d 603 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
177176anim2d 603 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
178159, 177syl5bi 234 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
179178reximdva 3221 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
180 r19.42v 3293 . . . . . . . . 9 (∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))) ↔ (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
181179, 180syl6ib 243 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
182181reximdva 3221 . . . . . . 7 ((𝜑𝑥𝑆) → (∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
183158, 182mpd 15 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
18441unieqi 4726 . . . . . . . 8 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
185184eleq2i 2859 . . . . . . 7 (𝑥 𝑂𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))})
186 elunirab 4729 . . . . . . 7 (𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
187185, 186bitri 267 . . . . . 6 (𝑥 𝑂 ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
188183, 187sylibr 226 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 𝑂)
189188ex 405 . . . 4 (𝜑 → (𝑥𝑆𝑥 𝑂))
190189ssrdv 3866 . . 3 (𝜑𝑆 𝑂)
191 unieq 4725 . . . . . 6 (𝑧 = 𝑂 𝑧 = 𝑂)
192191sseq2d 3891 . . . . 5 (𝑧 = 𝑂 → (𝑆 𝑧𝑆 𝑂))
193 pweq 4428 . . . . . . 7 (𝑧 = 𝑂 → 𝒫 𝑧 = 𝒫 𝑂)
194193ineq1d 4078 . . . . . 6 (𝑧 = 𝑂 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
195194rexeqdv 3358 . . . . 5 (𝑧 = 𝑂 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
196192, 195imbi12d 337 . . . 4 (𝑧 = 𝑂 → ((𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥) ↔ (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)))
197 hauscmplem.5 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
1985cmpsub 21727 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥)))
199198biimp3a 1449 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
2003, 150, 197, 199syl3anc 1352 . . . 4 (𝜑 → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
20141ssrab3 3949 . . . . 5 𝑂𝐽
202 elpw2g 5107 . . . . . 6 (𝐽 ∈ Haus → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
2031, 202syl 17 . . . . 5 (𝜑 → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
204201, 203mpbiri 250 . . . 4 (𝜑𝑂 ∈ 𝒫 𝐽)
205196, 200, 204rspcdva 3543 . . 3 (𝜑 → (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
206190, 205mpd 15 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)
207148, 206r19.29a 3236 1 (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wex 1743  wcel 2051  {cab 2760  wne 2969  wral 3090  wrex 3091  {crab 3094  Vcvv 3417  cdif 3828  cin 3830  wss 3831  c0 4181  𝒫 cpw 4425   cuni 4717   cint 4754   ciun 4797   ciin 4798  dom cdm 5411  ran crn 5412   Fn wfn 6188  wf 6189  ontowfo 6191  cfv 6193  (class class class)co 6982  Fincfn 8312  t crest 16556  Topctop 21220  Clsdccld 21343  clsccl 21345  Hauscha 21635  Compccmp 21713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-en 8313  df-dom 8314  df-fin 8316  df-fi 8676  df-rest 16558  df-topgen 16579  df-top 21221  df-topon 21238  df-bases 21273  df-cld 21346  df-cls 21348  df-haus 21642  df-cmp 21714
This theorem is referenced by:  hauscmp  21734  hausllycmp  21821
  Copyright terms: Public domain W3C validator