MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauscmplem Structured version   Visualization version   GIF version

Theorem hauscmplem 23326
Description: Lemma for hauscmp 23327. (Contributed by Mario Carneiro, 27-Nov-2013.)
Hypotheses
Ref Expression
hauscmp.1 𝑋 = 𝐽
hauscmplem.2 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
hauscmplem.3 (𝜑𝐽 ∈ Haus)
hauscmplem.4 (𝜑𝑆𝑋)
hauscmplem.5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
hauscmplem.6 (𝜑𝐴 ∈ (𝑋𝑆))
Assertion
Ref Expression
hauscmplem (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐽,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑤,𝑆,𝑦,𝑧   𝑧,𝑂   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑦,𝑤)

Proof of Theorem hauscmplem
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hauscmplem.3 . . . . . . 7 (𝜑𝐽 ∈ Haus)
2 haustop 23251 . . . . . . 7 (𝐽 ∈ Haus → 𝐽 ∈ Top)
31, 2syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
43ad3antrrr 730 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐽 ∈ Top)
5 hauscmp.1 . . . . . 6 𝑋 = 𝐽
65topopn 22826 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
74, 6syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑋𝐽)
8 hauscmplem.6 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝑆))
98eldifad 3923 . . . . 5 (𝜑𝐴𝑋)
109ad3antrrr 730 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝐴𝑋)
115clstop 22989 . . . . . . 7 (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋)
124, 11syl 17 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = 𝑋)
13 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 𝑥)
14 unieq 4878 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
15 uni0 4895 . . . . . . . . . . . 12 ∅ = ∅
1614, 15eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1716adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑥 = ∅)
1813, 17sseqtrd 3980 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∅)
19 ss0 4361 . . . . . . . . 9 (𝑆 ⊆ ∅ → 𝑆 = ∅)
2018, 19syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → 𝑆 = ∅)
2120difeq2d 4085 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = (𝑋 ∖ ∅))
22 dif0 4337 . . . . . . 7 (𝑋 ∖ ∅) = 𝑋
2321, 22eqtrdi 2780 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → (𝑋𝑆) = 𝑋)
2412, 23eqtr4d 2767 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = (𝑋𝑆))
25 eqimss 4002 . . . . 5 (((cls‘𝐽)‘𝑋) = (𝑋𝑆) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
2624, 25syl 17 . . . 4 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))
27 eleq2 2817 . . . . . 6 (𝑧 = 𝑋 → (𝐴𝑧𝐴𝑋))
28 fveq2 6840 . . . . . . 7 (𝑧 = 𝑋 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘𝑋))
2928sseq1d 3975 . . . . . 6 (𝑧 = 𝑋 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆)))
3027, 29anbi12d 632 . . . . 5 (𝑧 = 𝑋 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))))
3130rspcev 3585 . . . 4 ((𝑋𝐽 ∧ (𝐴𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
327, 10, 26, 31syl12anc 836 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 = ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
33 elin 3927 . . . . . . 7 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin))
34 id 22 . . . . . . . 8 (𝑥 ∈ Fin → 𝑥 ∈ Fin)
35 elpwi 4566 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑂𝑥𝑂)
3635sseld 3942 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥𝑧𝑂))
37 difeq2 4079 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑋𝑦) = (𝑋𝑧))
3837sseq2d 3976 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦) ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
3938anbi2d 630 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4039rexbidv 3157 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)) ↔ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
41 hauscmplem.2 . . . . . . . . . . . 12 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
4240, 41elrab2 3659 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑧𝐽 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4342simprbi 496 . . . . . . . . . 10 (𝑧𝑂 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
4436, 43syl6 35 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑂 → (𝑧𝑥 → ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))))
4544ralrimiv 3124 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑂 → ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)))
46 eleq2 2817 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (𝐴𝑤𝐴 ∈ (𝑓𝑧)))
47 fveq2 6840 . . . . . . . . . . 11 (𝑤 = (𝑓𝑧) → ((cls‘𝐽)‘𝑤) = ((cls‘𝐽)‘(𝑓𝑧)))
4847sseq1d 3975 . . . . . . . . . 10 (𝑤 = (𝑓𝑧) → (((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧) ↔ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))
4946, 48anbi12d 632 . . . . . . . . 9 (𝑤 = (𝑓𝑧) → ((𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧)) ↔ (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5049ac6sfi 9207 . . . . . . . 8 ((𝑥 ∈ Fin ∧ ∀𝑧𝑥𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑧))) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5134, 45, 50syl2anr 597 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑂𝑥 ∈ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5233, 51sylbi 217 . . . . . 6 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
5352ad2antlr 727 . . . . 5 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑓(𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))))
543ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐽 ∈ Top)
55 frn 6677 . . . . . . . 8 (𝑓:𝑥𝐽 → ran 𝑓𝐽)
5655ad2antrl 728 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
57 simprr 772 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
58 simpl 482 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥𝐽)
59 fdm 6679 . . . . . . . . . . . 12 (𝑓:𝑥𝐽 → dom 𝑓 = 𝑥)
6059eqeq1d 2731 . . . . . . . . . . 11 (𝑓:𝑥𝐽 → (dom 𝑓 = ∅ ↔ 𝑥 = ∅))
61 dm0rn0 5878 . . . . . . . . . . 11 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
6260, 61bitr3di 286 . . . . . . . . . 10 (𝑓:𝑥𝐽 → (𝑥 = ∅ ↔ ran 𝑓 = ∅))
6362necon3bid 2969 . . . . . . . . 9 (𝑓:𝑥𝐽 → (𝑥 ≠ ∅ ↔ ran 𝑓 ≠ ∅))
6463biimpac 478 . . . . . . . 8 ((𝑥 ≠ ∅ ∧ 𝑓:𝑥𝐽) → ran 𝑓 ≠ ∅)
6557, 58, 64syl2an 596 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ≠ ∅)
6633simprbi 496 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → 𝑥 ∈ Fin)
6766ad2antlr 727 . . . . . . . 8 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → 𝑥 ∈ Fin)
68 ffn 6670 . . . . . . . . . 10 (𝑓:𝑥𝐽𝑓 Fn 𝑥)
69 dffn4 6760 . . . . . . . . . 10 (𝑓 Fn 𝑥𝑓:𝑥onto→ran 𝑓)
7068, 69sylib 218 . . . . . . . . 9 (𝑓:𝑥𝐽𝑓:𝑥onto→ran 𝑓)
7170adantr 480 . . . . . . . 8 ((𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧))) → 𝑓:𝑥onto→ran 𝑓)
72 fofi 9238 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑓:𝑥onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7367, 71, 72syl2an 596 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 ∈ Fin)
74 fiinopn 22821 . . . . . . . 8 (𝐽 ∈ Top → ((ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ran 𝑓𝐽))
7574imp 406 . . . . . . 7 ((𝐽 ∈ Top ∧ (ran 𝑓𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ran 𝑓𝐽)
7654, 56, 65, 73, 75syl13anc 1374 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓𝐽)
77 simpl 482 . . . . . . . . . 10 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝐴 ∈ (𝑓𝑧))
7877ralimi 3066 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
7978ad2antll 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧))
808ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ∈ (𝑋𝑆))
81 eliin 4956 . . . . . . . . 9 (𝐴 ∈ (𝑋𝑆) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8280, 81syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝐴 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝐴 ∈ (𝑓𝑧)))
8379, 82mpbird 257 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 𝑧𝑥 (𝑓𝑧))
8468ad2antrl 728 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑓 Fn 𝑥)
85 fnrnfv 6902 . . . . . . . . . 10 (𝑓 Fn 𝑥 → ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
8685inteqd 4911 . . . . . . . . 9 (𝑓 Fn 𝑥 ran 𝑓 = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)})
87 fvex 6853 . . . . . . . . . 10 (𝑓𝑧) ∈ V
8887dfiin2 4993 . . . . . . . . 9 𝑧𝑥 (𝑓𝑧) = {𝑦 ∣ ∃𝑧𝑥 𝑦 = (𝑓𝑧)}
8986, 88eqtr4di 2782 . . . . . . . 8 (𝑓 Fn 𝑥 ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9084, 89syl 17 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 = 𝑧𝑥 (𝑓𝑧))
9183, 90eleqtrrd 2831 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝐴 ran 𝑓)
9257adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑥 ≠ ∅)
933ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → 𝐽 ∈ Top)
94 ffvelcdm 7035 . . . . . . . . . . . . . . 15 ((𝑓:𝑥𝐽𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
9594adantll 714 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ∈ 𝐽)
96 elssuni 4897 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝐽 → (𝑓𝑧) ⊆ 𝐽)
9795, 96syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝐽)
9897, 5sseqtrrdi 3985 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ 𝑋)
995clscld 22967 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10093, 98, 99syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
101100ralrimiva 3125 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
102101adantrr 717 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
103 iincld 22959 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ ∀𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
10492, 102, 103syl2anc 584 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽))
1055sscls 22976 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ (𝑓𝑧) ⊆ 𝑋) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
10693, 98, 105syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) ∧ 𝑧𝑥) → (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
107106ralrimiva 3125 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → ∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)))
108 ssel 3937 . . . . . . . . . . . . . 14 ((𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 ∈ (𝑓𝑧) → 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
109108ral2imi 3068 . . . . . . . . . . . . 13 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (∀𝑧𝑥 𝑦 ∈ (𝑓𝑧) → ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
110 eliin 4956 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧)))
111110elv 3449 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 (𝑓𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑓𝑧))
112 eliin 4956 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧))))
113112elv 3449 . . . . . . . . . . . . 13 (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ↔ ∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)))
114109, 111, 1133imtr4g 296 . . . . . . . . . . . 12 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → (𝑦 𝑧𝑥 (𝑓𝑧) → 𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))))
115114ssrdv 3949 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑓𝑧) ⊆ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
116107, 115syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ 𝑓:𝑥𝐽) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
117116adantrr 717 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑓𝑧) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
11890, 117eqsstrd 3978 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
1195clsss2 22992 . . . . . . . 8 (( 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ∈ (Clsd‘𝐽) ∧ ran 𝑓 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
120104, 118, 119syl2anc 584 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)))
121 ssel 3937 . . . . . . . . . . . . 13 (((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
122121adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 ∈ (𝑋𝑧)))
123122ral2imi 3068 . . . . . . . . . . 11 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (∀𝑧𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓𝑧)) → ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
124 eliin 4956 . . . . . . . . . . . 12 (𝑦 ∈ V → (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧)))
125124elv 3449 . . . . . . . . . . 11 (𝑦 𝑧𝑥 (𝑋𝑧) ↔ ∀𝑧𝑥 𝑦 ∈ (𝑋𝑧))
126123, 113, 1253imtr4g 296 . . . . . . . . . 10 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → (𝑦 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) → 𝑦 𝑧𝑥 (𝑋𝑧)))
127126ssrdv 3949 . . . . . . . . 9 (∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
128127ad2antll 729 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ 𝑧𝑥 (𝑋𝑧))
129 iindif2 5036 . . . . . . . . . 10 (𝑥 ≠ ∅ → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
13092, 129syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) = (𝑋 𝑧𝑥 𝑧))
131 simplrl 776 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑆 𝑥)
132 uniiun 5017 . . . . . . . . . . . 12 𝑥 = 𝑧𝑥 𝑧
133132sseq2i 3973 . . . . . . . . . . 11 (𝑆 𝑥𝑆 𝑧𝑥 𝑧)
134 sscon 4102 . . . . . . . . . . 11 (𝑆 𝑧𝑥 𝑧 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
135133, 134sylbi 217 . . . . . . . . . 10 (𝑆 𝑥 → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
136131, 135syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → (𝑋 𝑧𝑥 𝑧) ⊆ (𝑋𝑆))
137130, 136eqsstrd 3978 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 (𝑋𝑧) ⊆ (𝑋𝑆))
138128, 137sstrd 3954 . . . . . . 7 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → 𝑧𝑥 ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑆))
139120, 138sstrd 3954 . . . . . 6 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))
140 eleq2 2817 . . . . . . . 8 (𝑧 = ran 𝑓 → (𝐴𝑧𝐴 ran 𝑓))
141 fveq2 6840 . . . . . . . . 9 (𝑧 = ran 𝑓 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘ ran 𝑓))
142141sseq1d 3975 . . . . . . . 8 (𝑧 = ran 𝑓 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆) ↔ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆)))
143140, 142anbi12d 632 . . . . . . 7 (𝑧 = ran 𝑓 → ((𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)) ↔ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))))
144143rspcev 3585 . . . . . 6 (( ran 𝑓𝐽 ∧ (𝐴 ran 𝑓 ∧ ((cls‘𝐽)‘ ran 𝑓) ⊆ (𝑋𝑆))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14576, 91, 139, 144syl12anc 836 . . . . 5 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) ∧ (𝑓:𝑥𝐽 ∧ ∀𝑧𝑥 (𝐴 ∈ (𝑓𝑧) ∧ ((cls‘𝐽)‘(𝑓𝑧)) ⊆ (𝑋𝑧)))) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14653, 145exlimddv 1935 . . . 4 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 𝑥𝑥 ≠ ∅)) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
147146anassrs 467 . . 3 ((((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) ∧ 𝑥 ≠ ∅) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
14832, 147pm2.61dane 3012 . 2 (((𝜑𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 𝑥) → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
1491adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐽 ∈ Haus)
150 hauscmplem.4 . . . . . . . . 9 (𝜑𝑆𝑋)
151150sselda 3943 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑋)
1529adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴𝑋)
153 id 22 . . . . . . . . 9 (𝑥𝑆𝑥𝑆)
1548eldifbd 3924 . . . . . . . . 9 (𝜑 → ¬ 𝐴𝑆)
155 nelne2 3023 . . . . . . . . 9 ((𝑥𝑆 ∧ ¬ 𝐴𝑆) → 𝑥𝐴)
156153, 154, 155syl2anr 597 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝐴)
1575hausnei 23248 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥𝑋𝐴𝑋𝑥𝐴)) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
158149, 151, 152, 156, 157syl13anc 1374 . . . . . . 7 ((𝜑𝑥𝑆) → ∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅))
159 3anass 1094 . . . . . . . . . . 11 ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) ↔ (𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)))
160 elssuni 4897 . . . . . . . . . . . . . . . . 17 (𝑤𝐽𝑤 𝐽)
161160, 5sseqtrrdi 3985 . . . . . . . . . . . . . . . 16 (𝑤𝐽𝑤𝑋)
162161adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → 𝑤𝑋)
163 incom 4168 . . . . . . . . . . . . . . . . 17 (𝑦𝑤) = (𝑤𝑦)
164163eqeq1i 2734 . . . . . . . . . . . . . . . 16 ((𝑦𝑤) = ∅ ↔ (𝑤𝑦) = ∅)
165 reldisj 4412 . . . . . . . . . . . . . . . 16 (𝑤𝑋 → ((𝑤𝑦) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
166164, 165bitrid 283 . . . . . . . . . . . . . . 15 (𝑤𝑋 → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
167162, 166syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋𝑦)))
168149, 2syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐽 ∈ Top)
1695opncld 22953 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
170168, 169sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
171170adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑋𝑦) ∈ (Clsd‘𝐽))
1725clsss2 22992 . . . . . . . . . . . . . . . 16 (((𝑋𝑦) ∈ (Clsd‘𝐽) ∧ 𝑤 ⊆ (𝑋𝑦)) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))
173172ex 412 . . . . . . . . . . . . . . 15 ((𝑋𝑦) ∈ (Clsd‘𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
174171, 173syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → (𝑤 ⊆ (𝑋𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
175167, 174sylbid 240 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑦𝑤) = ∅ → ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))
176175anim2d 612 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
177176anim2d 612 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦 ∧ (𝐴𝑤 ∧ (𝑦𝑤) = ∅)) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
178159, 177biimtrid 242 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝐽) ∧ 𝑤𝐽) → ((𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
179178reximdva 3146 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
180 r19.42v 3167 . . . . . . . . 9 (∃𝑤𝐽 (𝑥𝑦 ∧ (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))) ↔ (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
181179, 180imbitrdi 251 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑦𝐽) → (∃𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
182181reximdva 3146 . . . . . . 7 ((𝜑𝑥𝑆) → (∃𝑦𝐽𝑤𝐽 (𝑥𝑦𝐴𝑤 ∧ (𝑦𝑤) = ∅) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦)))))
183158, 182mpd 15 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
18441unieqi 4879 . . . . . . . 8 𝑂 = {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))}
185184eleq2i 2820 . . . . . . 7 (𝑥 𝑂𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))})
186 elunirab 4882 . . . . . . 7 (𝑥 {𝑦𝐽 ∣ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))} ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
187185, 186bitri 275 . . . . . 6 (𝑥 𝑂 ↔ ∃𝑦𝐽 (𝑥𝑦 ∧ ∃𝑤𝐽 (𝐴𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋𝑦))))
188183, 187sylibr 234 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 𝑂)
189188ex 412 . . . 4 (𝜑 → (𝑥𝑆𝑥 𝑂))
190189ssrdv 3949 . . 3 (𝜑𝑆 𝑂)
191 unieq 4878 . . . . . 6 (𝑧 = 𝑂 𝑧 = 𝑂)
192191sseq2d 3976 . . . . 5 (𝑧 = 𝑂 → (𝑆 𝑧𝑆 𝑂))
193 pweq 4573 . . . . . . 7 (𝑧 = 𝑂 → 𝒫 𝑧 = 𝒫 𝑂)
194193ineq1d 4178 . . . . . 6 (𝑧 = 𝑂 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑂 ∩ Fin))
195194rexeqdv 3297 . . . . 5 (𝑧 = 𝑂 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
196192, 195imbi12d 344 . . . 4 (𝑧 = 𝑂 → ((𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥) ↔ (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)))
197 hauscmplem.5 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ Comp)
1985cmpsub 23320 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Comp ↔ ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥)))
199198biimp3a 1471 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ (𝐽t 𝑆) ∈ Comp) → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
2003, 150, 197, 199syl3anc 1373 . . . 4 (𝜑 → ∀𝑧 ∈ 𝒫 𝐽(𝑆 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 𝑥))
20141ssrab3 4041 . . . . 5 𝑂𝐽
202 elpw2g 5283 . . . . . 6 (𝐽 ∈ Haus → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
2031, 202syl 17 . . . . 5 (𝜑 → (𝑂 ∈ 𝒫 𝐽𝑂𝐽))
204201, 203mpbiri 258 . . . 4 (𝜑𝑂 ∈ 𝒫 𝐽)
205196, 200, 204rspcdva 3586 . . 3 (𝜑 → (𝑆 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥))
206190, 205mpd 15 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 𝑥)
207148, 206r19.29a 3141 1 (𝜑 → ∃𝑧𝐽 (𝐴𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559   cuni 4867   cint 4906   ciun 4951   ciin 4952  dom cdm 5631  ran crn 5632   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  Fincfn 8895  t crest 17359  Topctop 22813  Clsdccld 22936  clsccl 22938  Hauscha 23228  Compccmp 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-en 8896  df-dom 8897  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939  df-cls 22941  df-haus 23235  df-cmp 23307
This theorem is referenced by:  hauscmp  23327  hausllycmp  23414
  Copyright terms: Public domain W3C validator