Step | Hyp | Ref
| Expression |
1 | | hauscmplem.3 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Haus) |
2 | | haustop 22492 |
. . . . . . 7
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
4 | 3 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝐽 ∈ Top) |
5 | | hauscmp.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
6 | 5 | topopn 22065 |
. . . . 5
⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑋 ∈ 𝐽) |
8 | | hauscmplem.6 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (𝑋 ∖ 𝑆)) |
9 | 8 | eldifad 3898 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
10 | 9 | ad3antrrr 727 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝐴 ∈ 𝑋) |
11 | 5 | clstop 22230 |
. . . . . . 7
⊢ (𝐽 ∈ Top →
((cls‘𝐽)‘𝑋) = 𝑋) |
12 | 4, 11 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = 𝑋) |
13 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∪ 𝑥) |
14 | | unieq 4850 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
15 | | uni0 4869 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
16 | 14, 15 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∅) |
17 | 16 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ∪ 𝑥 =
∅) |
18 | 13, 17 | sseqtrd 3960 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑆 ⊆ ∅) |
19 | | ss0 4332 |
. . . . . . . . 9
⊢ (𝑆 ⊆ ∅ → 𝑆 = ∅) |
20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → 𝑆 = ∅) |
21 | 20 | difeq2d 4056 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → (𝑋 ∖ 𝑆) = (𝑋 ∖ ∅)) |
22 | | dif0 4306 |
. . . . . . 7
⊢ (𝑋 ∖ ∅) = 𝑋 |
23 | 21, 22 | eqtrdi 2794 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → (𝑋 ∖ 𝑆) = 𝑋) |
24 | 12, 23 | eqtr4d 2781 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) = (𝑋 ∖ 𝑆)) |
25 | | eqimss 3976 |
. . . . 5
⊢
(((cls‘𝐽)‘𝑋) = (𝑋 ∖ 𝑆) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆)) |
26 | 24, 25 | syl 17 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆)) |
27 | | eleq2 2827 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑋)) |
28 | | fveq2 6766 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → ((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘𝑋)) |
29 | 28 | sseq1d 3951 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) ↔ ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆))) |
30 | 27, 29 | anbi12d 631 |
. . . . 5
⊢ (𝑧 = 𝑋 → ((𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) ↔ (𝐴 ∈ 𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆)))) |
31 | 30 | rspcev 3559 |
. . . 4
⊢ ((𝑋 ∈ 𝐽 ∧ (𝐴 ∈ 𝑋 ∧ ((cls‘𝐽)‘𝑋) ⊆ (𝑋 ∖ 𝑆))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
32 | 7, 10, 26, 31 | syl12anc 834 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 = ∅) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
33 | | elin 3902 |
. . . . . . 7
⊢ (𝑥 ∈ (𝒫 𝑂 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑂 ∧ 𝑥 ∈ Fin)) |
34 | | id 22 |
. . . . . . . 8
⊢ (𝑥 ∈ Fin → 𝑥 ∈ Fin) |
35 | | elpwi 4542 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝑂 → 𝑥 ⊆ 𝑂) |
36 | 35 | sseld 3919 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝑂 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑂)) |
37 | | difeq2 4050 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑋 ∖ 𝑦) = (𝑋 ∖ 𝑧)) |
38 | 37 | sseq2d 3952 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦) ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) |
39 | 38 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)) ↔ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
40 | 39 | rexbidv 3224 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)) ↔ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
41 | | hauscmplem.2 |
. . . . . . . . . . . 12
⊢ 𝑂 = {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} |
42 | 40, 41 | elrab2 3626 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑂 ↔ (𝑧 ∈ 𝐽 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
43 | 42 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑂 → ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) |
44 | 36, 43 | syl6 35 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝑂 → (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)))) |
45 | 44 | ralrimiv 3107 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝑂 → ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) |
46 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑓‘𝑧) → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ (𝑓‘𝑧))) |
47 | | fveq2 6766 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑓‘𝑧) → ((cls‘𝐽)‘𝑤) = ((cls‘𝐽)‘(𝑓‘𝑧))) |
48 | 47 | sseq1d 3951 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑓‘𝑧) → (((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧) ↔ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧))) |
49 | 46, 48 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑤 = (𝑓‘𝑧) → ((𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧)) ↔ (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
50 | 49 | ac6sfi 9045 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑧))) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
51 | 34, 45, 50 | syl2anr 597 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 𝑂 ∧ 𝑥 ∈ Fin) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
52 | 33, 51 | sylbi 216 |
. . . . . 6
⊢ (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
53 | 52 | ad2antlr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑓(𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) |
54 | 3 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐽 ∈ Top) |
55 | | frn 6599 |
. . . . . . . 8
⊢ (𝑓:𝑥⟶𝐽 → ran 𝑓 ⊆ 𝐽) |
56 | 55 | ad2antrl 725 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ran 𝑓 ⊆ 𝐽) |
57 | | simprr 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅) |
58 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧))) → 𝑓:𝑥⟶𝐽) |
59 | | fdm 6601 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑥⟶𝐽 → dom 𝑓 = 𝑥) |
60 | 59 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑓:𝑥⟶𝐽 → (dom 𝑓 = ∅ ↔ 𝑥 = ∅)) |
61 | | dm0rn0 5827 |
. . . . . . . . . . 11
⊢ (dom
𝑓 = ∅ ↔ ran
𝑓 =
∅) |
62 | 60, 61 | bitr3di 286 |
. . . . . . . . . 10
⊢ (𝑓:𝑥⟶𝐽 → (𝑥 = ∅ ↔ ran 𝑓 = ∅)) |
63 | 62 | necon3bid 2988 |
. . . . . . . . 9
⊢ (𝑓:𝑥⟶𝐽 → (𝑥 ≠ ∅ ↔ ran 𝑓 ≠ ∅)) |
64 | 63 | biimpac 479 |
. . . . . . . 8
⊢ ((𝑥 ≠ ∅ ∧ 𝑓:𝑥⟶𝐽) → ran 𝑓 ≠ ∅) |
65 | 57, 58, 64 | syl2an 596 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ran 𝑓 ≠ ∅) |
66 | 33 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝑂 ∩ Fin) → 𝑥 ∈ Fin) |
67 | 66 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ Fin) |
68 | | ffn 6592 |
. . . . . . . . . 10
⊢ (𝑓:𝑥⟶𝐽 → 𝑓 Fn 𝑥) |
69 | | dffn4 6686 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 ↔ 𝑓:𝑥–onto→ran 𝑓) |
70 | 68, 69 | sylib 217 |
. . . . . . . . 9
⊢ (𝑓:𝑥⟶𝐽 → 𝑓:𝑥–onto→ran 𝑓) |
71 | 70 | adantr 481 |
. . . . . . . 8
⊢ ((𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧))) → 𝑓:𝑥–onto→ran 𝑓) |
72 | | fofi 9092 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ 𝑓:𝑥–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
73 | 67, 71, 72 | syl2an 596 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ran 𝑓 ∈ Fin) |
74 | | fiinopn 22060 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ((ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin) → ∩ ran 𝑓 ∈ 𝐽)) |
75 | 74 | imp 407 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ≠ ∅ ∧ ran 𝑓 ∈ Fin)) → ∩ ran 𝑓 ∈ 𝐽) |
76 | 54, 56, 65, 73, 75 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ ran
𝑓 ∈ 𝐽) |
77 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → 𝐴 ∈ (𝑓‘𝑧)) |
78 | 77 | ralimi 3087 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧)) |
79 | 78 | ad2antll 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧)) |
80 | 8 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐴 ∈ (𝑋 ∖ 𝑆)) |
81 | | eliin 4929 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑋 ∖ 𝑆) → (𝐴 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧))) |
82 | 80, 81 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → (𝐴 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝐴 ∈ (𝑓‘𝑧))) |
83 | 79, 82 | mpbird 256 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐴 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧)) |
84 | 68 | ad2antrl 725 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝑓 Fn 𝑥) |
85 | | fnrnfv 6821 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 → ran 𝑓 = {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 = (𝑓‘𝑧)}) |
86 | 85 | inteqd 4884 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑥 → ∩ ran
𝑓 = ∩ {𝑦
∣ ∃𝑧 ∈
𝑥 𝑦 = (𝑓‘𝑧)}) |
87 | | fvex 6779 |
. . . . . . . . . 10
⊢ (𝑓‘𝑧) ∈ V |
88 | 87 | dfiin2 4963 |
. . . . . . . . 9
⊢ ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) = ∩ {𝑦 ∣ ∃𝑧 ∈ 𝑥 𝑦 = (𝑓‘𝑧)} |
89 | 86, 88 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑥 → ∩ ran
𝑓 = ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧)) |
90 | 84, 89 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ ran
𝑓 = ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧)) |
91 | 83, 90 | eleqtrrd 2842 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝐴 ∈ ∩ ran
𝑓) |
92 | 57 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝑥 ≠ ∅) |
93 | 3 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → 𝐽 ∈ Top) |
94 | | ffvelrn 6951 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑥⟶𝐽 ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ 𝐽) |
95 | 94 | adantll 711 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ∈ 𝐽) |
96 | | elssuni 4871 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑧) ∈ 𝐽 → (𝑓‘𝑧) ⊆ ∪ 𝐽) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ⊆ ∪ 𝐽) |
98 | 97, 5 | sseqtrrdi 3971 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ⊆ 𝑋) |
99 | 5 | clscld 22208 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ (𝑓‘𝑧) ⊆ 𝑋) → ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
100 | 93, 98, 99 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
101 | 100 | ralrimiva 3108 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ 𝑓:𝑥⟶𝐽) → ∀𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
102 | 101 | adantrr 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∀𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
103 | | iincld 22200 |
. . . . . . . . 9
⊢ ((𝑥 ≠ ∅ ∧
∀𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
104 | 92, 102, 103 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽)) |
105 | 5 | sscls 22217 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ (𝑓‘𝑧) ⊆ 𝑋) → (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧))) |
106 | 93, 98, 105 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥
∧ 𝑥 ≠ ∅))
∧ 𝑓:𝑥⟶𝐽) ∧ 𝑧 ∈ 𝑥) → (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧))) |
107 | 106 | ralrimiva 3108 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ 𝑓:𝑥⟶𝐽) → ∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧))) |
108 | | ssel 3913 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → (𝑦 ∈ (𝑓‘𝑧) → 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)))) |
109 | 108 | ral2imi 3082 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → (∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑓‘𝑧) → ∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)))) |
110 | | eliin 4929 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑓‘𝑧))) |
111 | 110 | elv 3435 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑓‘𝑧)) |
112 | | eliin 4929 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)))) |
113 | 112 | elv 3435 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧))) |
114 | 109, 111,
113 | 3imtr4g 296 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → (𝑦 ∈ ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) → 𝑦 ∈ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)))) |
115 | 114 | ssrdv 3926 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝑓‘𝑧) ⊆ ((cls‘𝐽)‘(𝑓‘𝑧)) → ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
116 | 107, 115 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ 𝑓:𝑥⟶𝐽) → ∩
𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
117 | 116 | adantrr 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 (𝑓‘𝑧) ⊆ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
118 | 90, 117 | eqsstrd 3958 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ ran
𝑓 ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
119 | 5 | clsss2 22233 |
. . . . . . . 8
⊢
((∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ∈ (Clsd‘𝐽) ∧ ∩ ran
𝑓 ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) → ((cls‘𝐽)‘∩ ran
𝑓) ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
120 | 104, 118,
119 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ((cls‘𝐽)‘∩ ran
𝑓) ⊆ ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧))) |
121 | | ssel 3913 |
. . . . . . . . . . . . 13
⊢
(((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)) → 𝑦 ∈ (𝑋 ∖ 𝑧))) |
122 | 121 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → (𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)) → 𝑦 ∈ (𝑋 ∖ 𝑧))) |
123 | 122 | ral2imi 3082 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → (∀𝑧 ∈ 𝑥 𝑦 ∈ ((cls‘𝐽)‘(𝑓‘𝑧)) → ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑋 ∖ 𝑧))) |
124 | | eliin 4929 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑋 ∖ 𝑧))) |
125 | 124 | elv 3435 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) ↔ ∀𝑧 ∈ 𝑥 𝑦 ∈ (𝑋 ∖ 𝑧)) |
126 | 123, 113,
125 | 3imtr4g 296 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → (𝑦 ∈ ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) → 𝑦 ∈ ∩
𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧))) |
127 | 126 | ssrdv 3926 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)) → ∩
𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧)) |
128 | 127 | ad2antll 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧)) |
129 | | iindif2 5005 |
. . . . . . . . . 10
⊢ (𝑥 ≠ ∅ → ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) = (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧)) |
130 | 92, 129 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) = (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧)) |
131 | | simplrl 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → 𝑆 ⊆ ∪ 𝑥) |
132 | | uniiun 4987 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 =
∪ 𝑧 ∈ 𝑥 𝑧 |
133 | 132 | sseq2i 3949 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ ∪ 𝑥
↔ 𝑆 ⊆ ∪ 𝑧 ∈ 𝑥 𝑧) |
134 | | sscon 4072 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ ∪ 𝑧 ∈ 𝑥 𝑧 → (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
135 | 133, 134 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ ∪ 𝑥
→ (𝑋 ∖ ∪ 𝑧 ∈ 𝑥 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
136 | 131, 135 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → (𝑋 ∖ ∪
𝑧 ∈ 𝑥 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
137 | 130, 136 | eqsstrd 3958 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 (𝑋 ∖ 𝑧) ⊆ (𝑋 ∖ 𝑆)) |
138 | 128, 137 | sstrd 3930 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∩ 𝑧 ∈ 𝑥 ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑆)) |
139 | 120, 138 | sstrd 3930 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ((cls‘𝐽)‘∩ ran
𝑓) ⊆ (𝑋 ∖ 𝑆)) |
140 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑧 = ∩
ran 𝑓 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∩ ran
𝑓)) |
141 | | fveq2 6766 |
. . . . . . . . 9
⊢ (𝑧 = ∩
ran 𝑓 →
((cls‘𝐽)‘𝑧) = ((cls‘𝐽)‘∩ ran 𝑓)) |
142 | 141 | sseq1d 3951 |
. . . . . . . 8
⊢ (𝑧 = ∩
ran 𝑓 →
(((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆) ↔ ((cls‘𝐽)‘∩ ran
𝑓) ⊆ (𝑋 ∖ 𝑆))) |
143 | 140, 142 | anbi12d 631 |
. . . . . . 7
⊢ (𝑧 = ∩
ran 𝑓 → ((𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆)) ↔ (𝐴 ∈ ∩ ran
𝑓 ∧ ((cls‘𝐽)‘∩ ran 𝑓) ⊆ (𝑋 ∖ 𝑆)))) |
144 | 143 | rspcev 3559 |
. . . . . 6
⊢ ((∩ ran 𝑓 ∈ 𝐽 ∧ (𝐴 ∈ ∩ ran
𝑓 ∧ ((cls‘𝐽)‘∩ ran 𝑓) ⊆ (𝑋 ∖ 𝑆))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
145 | 76, 91, 139, 144 | syl12anc 834 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) ∧ (𝑓:𝑥⟶𝐽 ∧ ∀𝑧 ∈ 𝑥 (𝐴 ∈ (𝑓‘𝑧) ∧ ((cls‘𝐽)‘(𝑓‘𝑧)) ⊆ (𝑋 ∖ 𝑧)))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
146 | 53, 145 | exlimddv 1938 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ (𝑆 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∅)) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
147 | 146 | anassrs 468 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) ∧ 𝑥 ≠ ∅) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
148 | 32, 147 | pm2.61dane 3032 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑂 ∩ Fin)) ∧ 𝑆 ⊆ ∪ 𝑥) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |
149 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ Haus) |
150 | | hauscmplem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
151 | 150 | sselda 3920 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
152 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
153 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝑆) |
154 | 8 | eldifbd 3899 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝐴 ∈ 𝑆) |
155 | | nelne2 3042 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ ¬ 𝐴 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
156 | 153, 154,
155 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≠ 𝐴) |
157 | 5 | hausnei 22489 |
. . . . . . . 8
⊢ ((𝐽 ∈ Haus ∧ (𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ≠ 𝐴)) → ∃𝑦 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅)) |
158 | 149, 151,
152, 156, 157 | syl13anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∃𝑦 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅)) |
159 | | 3anass 1094 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) ↔ (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅))) |
160 | | elssuni 4871 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽) |
161 | 160, 5 | sseqtrrdi 3971 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ 𝐽 → 𝑤 ⊆ 𝑋) |
162 | 161 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → 𝑤 ⊆ 𝑋) |
163 | | incom 4134 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∩ 𝑤) = (𝑤 ∩ 𝑦) |
164 | 163 | eqeq1i 2743 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∩ 𝑤) = ∅ ↔ (𝑤 ∩ 𝑦) = ∅) |
165 | | reldisj 4385 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ⊆ 𝑋 → ((𝑤 ∩ 𝑦) = ∅ ↔ 𝑤 ⊆ (𝑋 ∖ 𝑦))) |
166 | 164, 165 | syl5bb 283 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ⊆ 𝑋 → ((𝑦 ∩ 𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋 ∖ 𝑦))) |
167 | 162, 166 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑦 ∩ 𝑤) = ∅ ↔ 𝑤 ⊆ (𝑋 ∖ 𝑦))) |
168 | 149, 2 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐽 ∈ Top) |
169 | 5 | opncld 22194 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
170 | 168, 169 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
171 | 170 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → (𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
172 | 5 | clsss2 22233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽) ∧ 𝑤 ⊆ (𝑋 ∖ 𝑦)) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)) |
173 | 172 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∖ 𝑦) ∈ (Clsd‘𝐽) → (𝑤 ⊆ (𝑋 ∖ 𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) |
174 | 171, 173 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → (𝑤 ⊆ (𝑋 ∖ 𝑦) → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) |
175 | 167, 174 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑦 ∩ 𝑤) = ∅ → ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) |
176 | 175 | anim2d 612 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
177 | 176 | anim2d 612 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅)) → (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
178 | 159, 177 | syl5bi 241 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) ∧ 𝑤 ∈ 𝐽) → ((𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
179 | 178 | reximdva 3201 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
180 | | r19.42v 3277 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐽 (𝑥 ∈ 𝑦 ∧ (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))) ↔ (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
181 | 179, 180 | syl6ib 250 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 ∈ 𝐽) → (∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
182 | 181 | reximdva 3201 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑦 ∈ 𝐽 ∃𝑤 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝐴 ∈ 𝑤 ∧ (𝑦 ∩ 𝑤) = ∅) → ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))))) |
183 | 158, 182 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
184 | 41 | unieqi 4852 |
. . . . . . . 8
⊢ ∪ 𝑂 =
∪ {𝑦 ∈ 𝐽 ∣ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} |
185 | 184 | eleq2i 2830 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ 𝑂
↔ 𝑥 ∈ ∪ {𝑦
∈ 𝐽 ∣
∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))}) |
186 | | elunirab 4855 |
. . . . . . 7
⊢ (𝑥 ∈ ∪ {𝑦
∈ 𝐽 ∣
∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦))} ↔ ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
187 | 185, 186 | bitri 274 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝑂
↔ ∃𝑦 ∈
𝐽 (𝑥 ∈ 𝑦 ∧ ∃𝑤 ∈ 𝐽 (𝐴 ∈ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑋 ∖ 𝑦)))) |
188 | 183, 187 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ∪ 𝑂) |
189 | 188 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑆 → 𝑥 ∈ ∪ 𝑂)) |
190 | 189 | ssrdv 3926 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ ∪ 𝑂) |
191 | | unieq 4850 |
. . . . . 6
⊢ (𝑧 = 𝑂 → ∪ 𝑧 = ∪
𝑂) |
192 | 191 | sseq2d 3952 |
. . . . 5
⊢ (𝑧 = 𝑂 → (𝑆 ⊆ ∪ 𝑧 ↔ 𝑆 ⊆ ∪ 𝑂)) |
193 | | pweq 4549 |
. . . . . . 7
⊢ (𝑧 = 𝑂 → 𝒫 𝑧 = 𝒫 𝑂) |
194 | 193 | ineq1d 4145 |
. . . . . 6
⊢ (𝑧 = 𝑂 → (𝒫 𝑧 ∩ Fin) = (𝒫 𝑂 ∩ Fin)) |
195 | 194 | rexeqdv 3347 |
. . . . 5
⊢ (𝑧 = 𝑂 → (∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
196 | 192, 195 | imbi12d 345 |
. . . 4
⊢ (𝑧 = 𝑂 → ((𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥) ↔ (𝑆 ⊆ ∪ 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥))) |
197 | | hauscmplem.5 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Comp) |
198 | 5 | cmpsub 22561 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Comp ↔ ∀𝑧 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥))) |
199 | 198 | biimp3a 1468 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ (𝐽 ↾t 𝑆) ∈ Comp) → ∀𝑧 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
200 | 3, 150, 197, 199 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝒫 𝐽(𝑆 ⊆ ∪ 𝑧 → ∃𝑥 ∈ (𝒫 𝑧 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
201 | 41 | ssrab3 4014 |
. . . . 5
⊢ 𝑂 ⊆ 𝐽 |
202 | | elpw2g 5266 |
. . . . . 6
⊢ (𝐽 ∈ Haus → (𝑂 ∈ 𝒫 𝐽 ↔ 𝑂 ⊆ 𝐽)) |
203 | 1, 202 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑂 ∈ 𝒫 𝐽 ↔ 𝑂 ⊆ 𝐽)) |
204 | 201, 203 | mpbiri 257 |
. . . 4
⊢ (𝜑 → 𝑂 ∈ 𝒫 𝐽) |
205 | 196, 200,
204 | rspcdva 3561 |
. . 3
⊢ (𝜑 → (𝑆 ⊆ ∪ 𝑂 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥)) |
206 | 190, 205 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑂 ∩ Fin)𝑆 ⊆ ∪ 𝑥) |
207 | 148, 206 | r19.29a 3216 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ ((cls‘𝐽)‘𝑧) ⊆ (𝑋 ∖ 𝑆))) |