Step | Hyp | Ref
| Expression |
1 | | eqid 2778 |
. . . 4
⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
2 | | eqid 2778 |
. . . 4
⊢
(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
3 | | prdsbnd.v |
. . . 4
⊢ 𝑉 = (Base‘(𝑅‘𝑥)) |
4 | | prdsbnd.e |
. . . 4
⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) |
5 | | eqid 2778 |
. . . 4
⊢
(dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
6 | | prdsbnd.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
7 | | prdsbnd.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
8 | | fvexd 6463 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ V) |
9 | | prdstotbnd.m |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (TotBnd‘𝑉)) |
10 | | totbndmet 34200 |
. . . . 5
⊢ (𝐸 ∈ (TotBnd‘𝑉) → 𝐸 ∈ (Met‘𝑉)) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | prdsmet 22587 |
. . 3
⊢ (𝜑 → (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))))) |
13 | | prdsbnd.d |
. . . 4
⊢ 𝐷 = (dist‘𝑌) |
14 | | prdsbnd.y |
. . . . . 6
⊢ 𝑌 = (𝑆Xs𝑅) |
15 | | prdsbnd.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
16 | | dffn5 6503 |
. . . . . . . 8
⊢ (𝑅 Fn 𝐼 ↔ 𝑅 = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
17 | 15, 16 | sylib 210 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
18 | 17 | oveq2d 6940 |
. . . . . 6
⊢ (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
19 | 14, 18 | syl5eq 2826 |
. . . . 5
⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
20 | 19 | fveq2d 6452 |
. . . 4
⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
21 | 13, 20 | syl5eq 2826 |
. . 3
⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
22 | | prdsbnd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
23 | 19 | fveq2d 6452 |
. . . . 5
⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
24 | 22, 23 | syl5eq 2826 |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
25 | 24 | fveq2d 6452 |
. . 3
⊢ (𝜑 → (Met‘𝐵) =
(Met‘(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))))) |
26 | 12, 21, 25 | 3eltr4d 2874 |
. 2
⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
27 | 7 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝐼 ∈ Fin) |
28 | | istotbnd3 34199 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ (TotBnd‘𝑉) ↔ (𝐸 ∈ (Met‘𝑉) ∧ ∀𝑟 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑉 ∩ Fin)∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
29 | 28 | simprbi 492 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (TotBnd‘𝑉) → ∀𝑟 ∈ ℝ+
∃𝑤 ∈ (𝒫
𝑉 ∩ Fin)∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) |
30 | 9, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∀𝑟 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑉 ∩ Fin)∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) |
31 | 30 | r19.21bi 3114 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑟 ∈ ℝ+) →
∃𝑤 ∈ (𝒫
𝑉 ∩ Fin)∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) |
32 | | df-rex 3096 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
(𝒫 𝑉 ∩
Fin)∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉 ↔ ∃𝑤(𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
33 | | rexv 3422 |
. . . . . . . . 9
⊢
(∃𝑤 ∈ V
(𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) ↔ ∃𝑤(𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
34 | 32, 33 | bitr4i 270 |
. . . . . . . 8
⊢
(∃𝑤 ∈
(𝒫 𝑉 ∩
Fin)∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉 ↔ ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
35 | 31, 34 | sylib 210 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑟 ∈ ℝ+) →
∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
36 | 35 | an32s 642 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝐼) → ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
37 | 36 | ralrimiva 3148 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) |
38 | | eleq1 2847 |
. . . . . . 7
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ↔ (𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin))) |
39 | | iuneq1 4769 |
. . . . . . . 8
⊢ (𝑤 = (𝑓‘𝑥) → ∪
𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟)) |
40 | 39 | eqeq1d 2780 |
. . . . . . 7
⊢ (𝑤 = (𝑓‘𝑥) → (∪
𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉 ↔ ∪
𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉)) |
41 | 38, 40 | anbi12d 624 |
. . . . . 6
⊢ (𝑤 = (𝑓‘𝑥) → ((𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉) ↔ ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) |
42 | 41 | ac6sfi 8494 |
. . . . 5
⊢ ((𝐼 ∈ Fin ∧ ∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V (𝑤 ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ 𝑤 (𝑧(ball‘𝐸)𝑟) = 𝑉)) → ∃𝑓(𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) |
43 | 27, 37, 42 | syl2anc 579 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑓(𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) |
44 | | elfpw 8558 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((𝑓‘𝑥) ⊆ 𝑉 ∧ (𝑓‘𝑥) ∈ Fin)) |
45 | 44 | simplbi 493 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) → (𝑓‘𝑥) ⊆ 𝑉) |
46 | 45 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → (𝑓‘𝑥) ⊆ 𝑉) |
47 | 46 | ralimi 3134 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ⊆ 𝑉) |
48 | 47 | ad2antll 719 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ⊆ 𝑉) |
49 | | ss2ixp 8209 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐼 (𝑓‘𝑥) ⊆ 𝑉 → X𝑥 ∈ 𝐼 (𝑓‘𝑥) ⊆ X𝑥 ∈ 𝐼 𝑉) |
50 | 48, 49 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥 ∈ 𝐼 (𝑓‘𝑥) ⊆ X𝑥 ∈ 𝐼 𝑉) |
51 | | fnfi 8528 |
. . . . . . . . . . 11
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ Fin) → 𝑅 ∈ Fin) |
52 | 15, 7, 51 | syl2anc 579 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Fin) |
53 | | fndm 6237 |
. . . . . . . . . . 11
⊢ (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼) |
54 | 15, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑅 = 𝐼) |
55 | 14, 6, 52, 22, 54 | prdsbas 16507 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
56 | 3 | rgenw 3106 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
𝐼 𝑉 = (Base‘(𝑅‘𝑥)) |
57 | | ixpeq2 8210 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐼 𝑉 = (Base‘(𝑅‘𝑥)) → X𝑥 ∈ 𝐼 𝑉 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
⊢ X𝑥 ∈
𝐼 𝑉 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) |
59 | 55, 58 | syl6eqr 2832 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 𝑉) |
60 | 59 | ad2antrr 716 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝐵 = X𝑥 ∈ 𝐼 𝑉) |
61 | 50, 60 | sseqtr4d 3861 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥 ∈ 𝐼 (𝑓‘𝑥) ⊆ 𝐵) |
62 | 27 | adantr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝐼 ∈ Fin) |
63 | 44 | simprbi 492 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) → (𝑓‘𝑥) ∈ Fin) |
64 | 63 | adantr 474 |
. . . . . . . . 9
⊢ (((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → (𝑓‘𝑥) ∈ Fin) |
65 | 64 | ralimi 3134 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ Fin) |
66 | 65 | ad2antll 719 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ Fin) |
67 | | ixpfi 8553 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ Fin) → X𝑥 ∈
𝐼 (𝑓‘𝑥) ∈ Fin) |
68 | 62, 66, 67 | syl2anc 579 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ Fin) |
69 | | elfpw 8558 |
. . . . . 6
⊢ (X𝑥 ∈
𝐼 (𝑓‘𝑥) ∈ (𝒫 𝐵 ∩ Fin) ↔ (X𝑥 ∈
𝐼 (𝑓‘𝑥) ⊆ 𝐵 ∧ X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ Fin)) |
70 | 61, 68, 69 | sylanbrc 578 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∈ (𝒫 𝐵 ∩ Fin)) |
71 | | metxmet 22551 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (Met‘𝐵) → 𝐷 ∈ (∞Met‘𝐵)) |
72 | 26, 71 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) |
73 | | rpxr 12152 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
74 | | blssm 22635 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
75 | 74 | 3expa 1108 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑦 ∈ 𝐵) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
76 | 75 | an32s 642 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑟 ∈ ℝ*) ∧ 𝑦 ∈ 𝐵) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
77 | 76 | ralrimiva 3148 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑟 ∈ ℝ*) →
∀𝑦 ∈ 𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
78 | 72, 73, 77 | syl2an 589 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∀𝑦 ∈ 𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
79 | 78 | adantr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑦 ∈ 𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
80 | | ssralv 3885 |
. . . . . . . 8
⊢ (X𝑥 ∈
𝐼 (𝑓‘𝑥) ⊆ 𝐵 → (∀𝑦 ∈ 𝐵 (𝑦(ball‘𝐷)𝑟) ⊆ 𝐵 → ∀𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵)) |
81 | 61, 79, 80 | sylc 65 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∀𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
82 | | iunss 4796 |
. . . . . . 7
⊢ (∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵 ↔ ∀𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
83 | 81, 82 | sylibr 226 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) ⊆ 𝐵) |
84 | 62 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → 𝐼 ∈ Fin) |
85 | 60 | eleq2d 2845 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔 ∈ 𝐵 ↔ 𝑔 ∈ X𝑥 ∈ 𝐼 𝑉)) |
86 | | vex 3401 |
. . . . . . . . . . . . . . . 16
⊢ 𝑔 ∈ V |
87 | 86 | elixp 8203 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ X𝑥 ∈
𝐼 𝑉 ↔ (𝑔 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉)) |
88 | 87 | simprbi 492 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ X𝑥 ∈
𝐼 𝑉 → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉) |
89 | | df-rex 3096 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑧 ∈
(𝑓‘𝑥)(𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟) ↔ ∃𝑧(𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟))) |
90 | | eliun 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔‘𝑥) ∈ ∪
𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) ↔ ∃𝑧 ∈ (𝑓‘𝑥)(𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) |
91 | | rexv 3422 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑧 ∈ V
(𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) ↔ ∃𝑧(𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟))) |
92 | 89, 90, 91 | 3bitr4i 295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔‘𝑥) ∈ ∪
𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) ↔ ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟))) |
93 | | eleq2 2848 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉 → ((𝑔‘𝑥) ∈ ∪
𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) ↔ (𝑔‘𝑥) ∈ 𝑉)) |
94 | 92, 93 | syl5bbr 277 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉 → (∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) ↔ (𝑔‘𝑥) ∈ 𝑉)) |
95 | 94 | biimprd 240 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉 → ((𝑔‘𝑥) ∈ 𝑉 → ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))) |
96 | 95 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → ((𝑔‘𝑥) ∈ 𝑉 → ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))) |
97 | 96 | ral2imi 3129 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉) → (∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉 → ∀𝑥 ∈ 𝐼 ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))) |
98 | 97 | ad2antll 719 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ 𝑉 → ∀𝑥 ∈ 𝐼 ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))) |
99 | 88, 98 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔 ∈ X𝑥 ∈ 𝐼 𝑉 → ∀𝑥 ∈ 𝐼 ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))) |
100 | 85, 99 | sylbid 232 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔 ∈ 𝐵 → ∀𝑥 ∈ 𝐼 ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)))) |
101 | 100 | imp 397 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → ∀𝑥 ∈ 𝐼 ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟))) |
102 | | eleq1 2847 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑦‘𝑥) → (𝑧 ∈ (𝑓‘𝑥) ↔ (𝑦‘𝑥) ∈ (𝑓‘𝑥))) |
103 | | oveq1 6931 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑦‘𝑥) → (𝑧(ball‘𝐸)𝑟) = ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
104 | 103 | eleq2d 2845 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑦‘𝑥) → ((𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟) ↔ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) |
105 | 102, 104 | anbi12d 624 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑦‘𝑥) → ((𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟)) ↔ ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) |
106 | 105 | ac6sfi 8494 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ Fin ∧ ∀𝑥 ∈ 𝐼 ∃𝑧 ∈ V (𝑧 ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ (𝑧(ball‘𝐸)𝑟))) → ∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) |
107 | 84, 101, 106 | syl2anc 579 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → ∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) |
108 | | ffn 6293 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦:𝐼⟶V → 𝑦 Fn 𝐼) |
109 | | simpl 476 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) → (𝑦‘𝑥) ∈ (𝑓‘𝑥)) |
110 | 109 | ralimi 3134 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) → ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (𝑓‘𝑥)) |
111 | 108, 110 | anim12i 606 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) → (𝑦 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (𝑓‘𝑥))) |
112 | | vex 3401 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
113 | 112 | elixp 8203 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 (𝑓‘𝑥) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ (𝑓‘𝑥))) |
114 | 111, 113 | sylibr 226 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) → 𝑦 ∈ X𝑥 ∈ 𝐼 (𝑓‘𝑥)) |
115 | 114 | adantl 475 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑦 ∈ X𝑥 ∈ 𝐼 (𝑓‘𝑥)) |
116 | 85 | biimpa 470 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → 𝑔 ∈ X𝑥 ∈ 𝐼 𝑉) |
117 | | ixpfn 8202 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 ∈ X𝑥 ∈
𝐼 𝑉 → 𝑔 Fn 𝐼) |
118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → 𝑔 Fn 𝐼) |
119 | 118 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑔 Fn 𝐼) |
120 | | simpr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) → (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
121 | 120 | ralimi 3134 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
122 | 121 | ad2antll 719 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
123 | 86 | elixp 8203 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ X𝑥 ∈
𝐼 ((𝑦‘𝑥)(ball‘𝐸)𝑟) ↔ (𝑔 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) |
124 | 119, 122,
123 | sylanbrc 578 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑔 ∈ X𝑥 ∈ 𝐼 ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
125 | | simp-4l 773 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝜑) |
126 | 50 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → X𝑥 ∈ 𝐼 (𝑓‘𝑥) ⊆ X𝑥 ∈ 𝐼 𝑉) |
127 | 126, 115 | sseldd 3822 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑦 ∈ X𝑥 ∈ 𝐼 𝑉) |
128 | 125, 59 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝐵 = X𝑥 ∈ 𝐼 𝑉) |
129 | 127, 128 | eleqtrrd 2862 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑦 ∈ 𝐵) |
130 | | simp-4r 774 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑟 ∈ ℝ+) |
131 | | fveq2 6448 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑥 → (𝑅‘𝑦) = (𝑅‘𝑥)) |
132 | 131 | cbvmptv 4987 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)) = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)) |
133 | 132 | oveq2i 6935 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
134 | 19, 133 | syl6eqr 2832 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) |
135 | 134 | fveq2d 6452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
136 | 13, 135 | syl5eq 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
137 | 136 | fveq2d 6452 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ball‘𝐷) =
(ball‘(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))))) |
138 | 137 | oveqdr 6952 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))))𝑟)) |
139 | | eqid 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) |
140 | | eqid 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) |
141 | 6 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑆 ∈ 𝑊) |
142 | 7 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin) |
143 | | fvexd 6463 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ V) |
144 | | metxmet 22551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉)) |
145 | 11, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
146 | 145 | adantlr 705 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
147 | | simprl 761 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑦 ∈ 𝐵) |
148 | 134 | fveq2d 6452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
149 | 22, 148 | syl5eq 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
150 | 149 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝐵 = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
151 | 147, 150 | eleqtrd 2861 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑦 ∈ (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
152 | 73 | ad2antll 719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ*) |
153 | | rpgt0 12155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ℝ+
→ 0 < 𝑟) |
154 | 153 | ad2antll 719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 0 <
𝑟) |
155 | 133, 139,
3, 4, 140, 141, 142, 143, 146, 151, 152, 154 | prdsbl 22708 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑦(ball‘(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))))𝑟) = X𝑥 ∈ 𝐼 ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
156 | 138, 155 | eqtrd 2814 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑦(ball‘𝐷)𝑟) = X𝑥 ∈ 𝐼 ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
157 | 125, 129,
130, 156 | syl12anc 827 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → (𝑦(ball‘𝐷)𝑟) = X𝑥 ∈ 𝐼 ((𝑦‘𝑥)(ball‘𝐸)𝑟)) |
158 | 124, 157 | eleqtrrd 2862 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → 𝑔 ∈ (𝑦(ball‘𝐷)𝑟)) |
159 | 115, 158 | jca 507 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) ∧ (𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟)))) → (𝑦 ∈ X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟))) |
160 | 159 | ex 403 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → ((𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) → (𝑦 ∈ X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟)))) |
161 | 160 | eximdv 1960 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → (∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) → ∃𝑦(𝑦 ∈ X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟)))) |
162 | | df-rex 3096 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
X 𝑥
∈ 𝐼 (𝑓‘𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦(𝑦 ∈ X𝑥 ∈ 𝐼 (𝑓‘𝑥) ∧ 𝑔 ∈ (𝑦(ball‘𝐷)𝑟))) |
163 | 161, 162 | syl6ibr 244 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → (∃𝑦(𝑦:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑦‘𝑥) ∈ (𝑓‘𝑥) ∧ (𝑔‘𝑥) ∈ ((𝑦‘𝑥)(ball‘𝐸)𝑟))) → ∃𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟))) |
164 | 107, 163 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) ∧ 𝑔 ∈ 𝐵) → ∃𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟)) |
165 | 164 | ex 403 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔 ∈ 𝐵 → ∃𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟))) |
166 | | eliun 4759 |
. . . . . . . 8
⊢ (𝑔 ∈ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) ↔ ∃𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)𝑔 ∈ (𝑦(ball‘𝐷)𝑟)) |
167 | 165, 166 | syl6ibr 244 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → (𝑔 ∈ 𝐵 → 𝑔 ∈ ∪
𝑦 ∈ X 𝑥 ∈
𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟))) |
168 | 167 | ssrdv 3827 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → 𝐵 ⊆ ∪
𝑦 ∈ X 𝑥 ∈
𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟)) |
169 | 83, 168 | eqssd 3838 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) = 𝐵) |
170 | | iuneq1 4769 |
. . . . . . 7
⊢ (𝑣 = X𝑥 ∈ 𝐼 (𝑓‘𝑥) → ∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = ∪ 𝑦 ∈ X
𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟)) |
171 | 170 | eqeq1d 2780 |
. . . . . 6
⊢ (𝑣 = X𝑥 ∈ 𝐼 (𝑓‘𝑥) → (∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵 ↔ ∪
𝑦 ∈ X 𝑥 ∈
𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) = 𝐵)) |
172 | 171 | rspcev 3511 |
. . . . 5
⊢ ((X𝑥 ∈
𝐼 (𝑓‘𝑥) ∈ (𝒫 𝐵 ∩ Fin) ∧ ∪ 𝑦 ∈ X 𝑥 ∈ 𝐼 (𝑓‘𝑥)(𝑦(ball‘𝐷)𝑟) = 𝐵) → ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin)∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵) |
173 | 70, 169, 172 | syl2anc 579 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑓:𝐼⟶V ∧ ∀𝑥 ∈ 𝐼 ((𝑓‘𝑥) ∈ (𝒫 𝑉 ∩ Fin) ∧ ∪ 𝑧 ∈ (𝑓‘𝑥)(𝑧(ball‘𝐸)𝑟) = 𝑉))) → ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin)∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵) |
174 | 43, 173 | exlimddv 1978 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑣 ∈ (𝒫
𝐵 ∩ Fin)∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵) |
175 | 174 | ralrimiva 3148 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin)∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵) |
176 | | istotbnd3 34199 |
. 2
⊢ (𝐷 ∈ (TotBnd‘𝐵) ↔ (𝐷 ∈ (Met‘𝐵) ∧ ∀𝑟 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝐵 ∩ Fin)∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝐷)𝑟) = 𝐵)) |
177 | 26, 175, 176 | sylanbrc 578 |
1
⊢ (𝜑 → 𝐷 ∈ (TotBnd‘𝐵)) |