| Step | Hyp | Ref
| Expression |
| 1 | | simprl 770 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → 𝑧 Fn 𝐼) |
| 2 | | ssel 3957 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → ((𝑧‘𝑥) ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
| 3 | 2 | ral2imi 3076 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼) → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) |
| 5 | 4 | impr 454 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) |
| 6 | | eleq2 2824 |
. . . . . . . . . . . 12
⊢ (𝐴 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧‘𝑥) ∈ 𝐴 ↔ (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 7 | | eleq2 2824 |
. . . . . . . . . . . 12
⊢ (𝐵 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 8 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝑧‘𝑥) ∈ 𝐴) |
| 9 | | ssel2 3958 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) → (𝑧‘𝑥) ∈ 𝐵) |
| 10 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) ∧ ¬ 𝑥 = 𝑦) → (𝑧‘𝑥) ∈ 𝐵) |
| 11 | 6, 7, 8, 10 | ifbothda 4544 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) → (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
| 12 | 11 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 → ((𝑧‘𝑥) ∈ 𝐴 → (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 13 | 12 | ral2imi 3076 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 14 | 13 | adantr 480 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼) → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 15 | 14 | impr 454 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
| 16 | 1, 15 | jca 511 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 17 | 16 | ralrimivw 3137 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 18 | 1, 5, 17 | jca31 514 |
. . . 4
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
| 19 | | simprll 778 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → 𝑧 Fn 𝐼) |
| 20 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
| 21 | 20 | ralimi 3074 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑦 ∈ 𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
| 22 | | ralcom 3274 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
| 23 | | iftrue 4511 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴) |
| 24 | 23 | equcoms 2020 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴) |
| 25 | 24 | eleq2d 2821 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧‘𝑥) ∈ 𝐴)) |
| 26 | 25 | rspcva 3604 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → (𝑧‘𝑥) ∈ 𝐴) |
| 27 | 26 | ralimiaa 3073 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐼 ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
| 28 | 22, 27 | sylbi 217 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
| 29 | 21, 28 | syl 17 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
| 30 | 29 | ad2antll 729 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
| 31 | 19, 30 | jca 511 |
. . . 4
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) |
| 32 | 18, 31 | impbida 800 |
. . 3
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))) |
| 33 | | vex 3468 |
. . . 4
⊢ 𝑧 ∈ V |
| 34 | 33 | elixp 8923 |
. . 3
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 𝐴 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) |
| 35 | | elin 3947 |
. . . 4
⊢ (𝑧 ∈ (X𝑥 ∈
𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ (𝑧 ∈ X𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 36 | 33 | elixp 8923 |
. . . . 5
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 𝐵 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) |
| 37 | | eliin 4977 |
. . . . . . 7
⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 38 | 37 | elv 3469 |
. . . . . 6
⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) |
| 39 | 33 | elixp 8923 |
. . . . . . 7
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 40 | 39 | ralbii 3083 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 41 | 38, 40 | bitri 275 |
. . . . 5
⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
| 42 | 36, 41 | anbi12i 628 |
. . . 4
⊢ ((𝑧 ∈ X𝑥 ∈
𝐼 𝐵 ∧ 𝑧 ∈ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
| 43 | 35, 42 | bitri 275 |
. . 3
⊢ (𝑧 ∈ (X𝑥 ∈
𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
| 44 | 32, 34, 43 | 3bitr4g 314 |
. 2
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (𝑧 ∈ X𝑥 ∈ 𝐼 𝐴 ↔ 𝑧 ∈ (X𝑥 ∈ 𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
| 45 | 44 | eqrdv 2734 |
1
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → X𝑥 ∈ 𝐼 𝐴 = (X𝑥 ∈ 𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |