MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  boxriin Structured version   Visualization version   GIF version

Theorem boxriin 8216
Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
boxriin (∀𝑥𝐼 𝐴𝐵X𝑥𝐼 𝐴 = (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐼,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem boxriin
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simprl 789 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → 𝑧 Fn 𝐼)
2 ssel 3820 . . . . . . . 8 (𝐴𝐵 → ((𝑧𝑥) ∈ 𝐴 → (𝑧𝑥) ∈ 𝐵))
32ral2imi 3155 . . . . . . 7 (∀𝑥𝐼 𝐴𝐵 → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵))
43adantr 474 . . . . . 6 ((∀𝑥𝐼 𝐴𝐵𝑧 Fn 𝐼) → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵))
54impr 448 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵)
6 eleq2 2894 . . . . . . . . . . . 12 (𝐴 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧𝑥) ∈ 𝐴 ↔ (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
7 eleq2 2894 . . . . . . . . . . . 12 (𝐵 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧𝑥) ∈ 𝐵 ↔ (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
8 simplr 787 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝑧𝑥) ∈ 𝐴)
9 ssel2 3821 . . . . . . . . . . . . 13 ((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) → (𝑧𝑥) ∈ 𝐵)
109adantr 474 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) ∧ ¬ 𝑥 = 𝑦) → (𝑧𝑥) ∈ 𝐵)
116, 7, 8, 10ifbothda 4342 . . . . . . . . . . 11 ((𝐴𝐵 ∧ (𝑧𝑥) ∈ 𝐴) → (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
1211ex 403 . . . . . . . . . 10 (𝐴𝐵 → ((𝑧𝑥) ∈ 𝐴 → (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1312ral2imi 3155 . . . . . . . . 9 (∀𝑥𝐼 𝐴𝐵 → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1413adantr 474 . . . . . . . 8 ((∀𝑥𝐼 𝐴𝐵𝑧 Fn 𝐼) → (∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴 → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1514impr 448 . . . . . . 7 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
161, 15jca 509 . . . . . 6 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
1716ralrimivw 3175 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
181, 5, 17jca31 512 . . . 4 ((∀𝑥𝐼 𝐴𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)) → ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))
19 simprll 799 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → 𝑧 Fn 𝐼)
20 simpr 479 . . . . . . . 8 ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
2120ralimi 3160 . . . . . . 7 (∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑦𝐼𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
22 ralcom 3307 . . . . . . . 8 (∀𝑦𝐼𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑥𝐼𝑦𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))
23 iftrue 4311 . . . . . . . . . . . 12 (𝑥 = 𝑦 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴)
2423equcoms 2126 . . . . . . . . . . 11 (𝑦 = 𝑥 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴)
2524eleq2d 2891 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧𝑥) ∈ 𝐴))
2625rspcva 3523 . . . . . . . . 9 ((𝑥𝐼 ∧ ∀𝑦𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → (𝑧𝑥) ∈ 𝐴)
2726ralimiaa 3159 . . . . . . . 8 (∀𝑥𝐼𝑦𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
2822, 27sylbi 209 . . . . . . 7 (∀𝑦𝐼𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
2921, 28syl 17 . . . . . 6 (∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
3029ad2antll 722 . . . . 5 ((∀𝑥𝐼 𝐴𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴)
3119, 30jca 509 . . . 4 ((∀𝑥𝐼 𝐴𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴))
3218, 31impbida 837 . . 3 (∀𝑥𝐼 𝐴𝐵 → ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))))
33 vex 3416 . . . 4 𝑧 ∈ V
3433elixp 8181 . . 3 (𝑧X𝑥𝐼 𝐴 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐴))
35 elin 4022 . . . 4 (𝑧 ∈ (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ (𝑧X𝑥𝐼 𝐵𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
3633elixp 8181 . . . . 5 (𝑧X𝑥𝐼 𝐵 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵))
37 eliin 4744 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
3833, 37ax-mp 5 . . . . . 6 (𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))
3933elixp 8181 . . . . . . 7 (𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
4039ralbii 3188 . . . . . 6 (∀𝑦𝐼 𝑧X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
4138, 40bitri 267 . . . . 5 (𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))
4236, 41anbi12i 622 . . . 4 ((𝑧X𝑥𝐼 𝐵𝑧 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))
4335, 42bitri 267 . . 3 (𝑧 ∈ (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ 𝐵) ∧ ∀𝑦𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑧𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))
4432, 34, 433bitr4g 306 . 2 (∀𝑥𝐼 𝐴𝐵 → (𝑧X𝑥𝐼 𝐴𝑧 ∈ (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))))
4544eqrdv 2822 1 (∀𝑥𝐼 𝐴𝐵X𝑥𝐼 𝐴 = (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wral 3116  Vcvv 3413  cin 3796  wss 3797  ifcif 4305   ciin 4740   Fn wfn 6117  cfv 6122  Xcixp 8174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iin 4742  df-br 4873  df-opab 4935  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-iota 6085  df-fun 6124  df-fn 6125  df-fv 6130  df-ixp 8175
This theorem is referenced by:  ptcld  21786  kelac1  38475
  Copyright terms: Public domain W3C validator