Step | Hyp | Ref
| Expression |
1 | | simprl 767 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → 𝑧 Fn 𝐼) |
2 | | ssel 3910 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → ((𝑧‘𝑥) ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
3 | 2 | ral2imi 3081 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) |
4 | 3 | adantr 480 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼) → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) |
5 | 4 | impr 454 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) |
6 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝐴 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧‘𝑥) ∈ 𝐴 ↔ (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
7 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝐵 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
8 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝑧‘𝑥) ∈ 𝐴) |
9 | | ssel2 3912 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) → (𝑧‘𝑥) ∈ 𝐵) |
10 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) ∧ ¬ 𝑥 = 𝑦) → (𝑧‘𝑥) ∈ 𝐵) |
11 | 6, 7, 8, 10 | ifbothda 4494 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) → (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
12 | 11 | ex 412 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 → ((𝑧‘𝑥) ∈ 𝐴 → (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
13 | 12 | ral2imi 3081 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼) → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
15 | 14 | impr 454 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
16 | 1, 15 | jca 511 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
17 | 16 | ralrimivw 3108 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
18 | 1, 5, 17 | jca31 514 |
. . . 4
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
19 | | simprll 775 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → 𝑧 Fn 𝐼) |
20 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
21 | 20 | ralimi 3086 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑦 ∈ 𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
22 | | ralcom 3280 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) |
23 | | iftrue 4462 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴) |
24 | 23 | equcoms 2024 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴) |
25 | 24 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧‘𝑥) ∈ 𝐴)) |
26 | 25 | rspcva 3550 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → (𝑧‘𝑥) ∈ 𝐴) |
27 | 26 | ralimiaa 3085 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐼 ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
28 | 22, 27 | sylbi 216 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
29 | 21, 28 | syl 17 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
30 | 29 | ad2antll 725 |
. . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) |
31 | 19, 30 | jca 511 |
. . . 4
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) |
32 | 18, 31 | impbida 797 |
. . 3
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))) |
33 | | vex 3426 |
. . . 4
⊢ 𝑧 ∈ V |
34 | 33 | elixp 8650 |
. . 3
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 𝐴 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) |
35 | | elin 3899 |
. . . 4
⊢ (𝑧 ∈ (X𝑥 ∈
𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ (𝑧 ∈ X𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |
36 | 33 | elixp 8650 |
. . . . 5
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 𝐵 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) |
37 | | eliin 4926 |
. . . . . . 7
⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |
38 | 37 | elv 3428 |
. . . . . 6
⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) |
39 | 33 | elixp 8650 |
. . . . . . 7
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
40 | 39 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
41 | 38, 40 | bitri 274 |
. . . . 5
⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) |
42 | 36, 41 | anbi12i 626 |
. . . 4
⊢ ((𝑧 ∈ X𝑥 ∈
𝐼 𝐵 ∧ 𝑧 ∈ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
43 | 35, 42 | bitri 274 |
. . 3
⊢ (𝑧 ∈ (X𝑥 ∈
𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
44 | 32, 34, 43 | 3bitr4g 313 |
. 2
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (𝑧 ∈ X𝑥 ∈ 𝐼 𝐴 ↔ 𝑧 ∈ (X𝑥 ∈ 𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))) |
45 | 44 | eqrdv 2736 |
1
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → X𝑥 ∈ 𝐼 𝐴 = (X𝑥 ∈ 𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |