| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprl 770 | . . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → 𝑧 Fn 𝐼) | 
| 2 |  | ssel 3976 | . . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 → ((𝑧‘𝑥) ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | 
| 3 | 2 | ral2imi 3084 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) | 
| 4 | 3 | adantr 480 | . . . . . 6
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼) → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) | 
| 5 | 4 | impr 454 | . . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) | 
| 6 |  | eleq2 2829 | . . . . . . . . . . . 12
⊢ (𝐴 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧‘𝑥) ∈ 𝐴 ↔ (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 7 |  | eleq2 2829 | . . . . . . . . . . . 12
⊢ (𝐵 = if(𝑥 = 𝑦, 𝐴, 𝐵) → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 8 |  | simplr 768 | . . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) ∧ 𝑥 = 𝑦) → (𝑧‘𝑥) ∈ 𝐴) | 
| 9 |  | ssel2 3977 | . . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) → (𝑧‘𝑥) ∈ 𝐵) | 
| 10 | 9 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) ∧ ¬ 𝑥 = 𝑦) → (𝑧‘𝑥) ∈ 𝐵) | 
| 11 | 6, 7, 8, 10 | ifbothda 4563 | . . . . . . . . . . 11
⊢ ((𝐴 ⊆ 𝐵 ∧ (𝑧‘𝑥) ∈ 𝐴) → (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) | 
| 12 | 11 | ex 412 | . . . . . . . . . 10
⊢ (𝐴 ⊆ 𝐵 → ((𝑧‘𝑥) ∈ 𝐴 → (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 13 | 12 | ral2imi 3084 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 14 | 13 | adantr 480 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼) → (∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴 → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 15 | 14 | impr 454 | . . . . . . 7
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) | 
| 16 | 1, 15 | jca 511 | . . . . . 6
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 17 | 16 | ralrimivw 3149 | . . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 18 | 1, 5, 17 | jca31 514 | . . . 4
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) → ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) | 
| 19 |  | simprll 778 | . . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → 𝑧 Fn 𝐼) | 
| 20 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) | 
| 21 | 20 | ralimi 3082 | . . . . . . 7
⊢
(∀𝑦 ∈
𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑦 ∈ 𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) | 
| 22 |  | ralcom 3288 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) | 
| 23 |  | iftrue 4530 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴) | 
| 24 | 23 | equcoms 2018 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → if(𝑥 = 𝑦, 𝐴, 𝐵) = 𝐴) | 
| 25 | 24 | eleq2d 2826 | . . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧‘𝑥) ∈ 𝐴)) | 
| 26 | 25 | rspcva 3619 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → (𝑧‘𝑥) ∈ 𝐴) | 
| 27 | 26 | ralimiaa 3081 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝐼 ∀𝑦 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) | 
| 28 | 22, 27 | sylbi 217 | . . . . . . 7
⊢
(∀𝑦 ∈
𝐼 ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) | 
| 29 | 21, 28 | syl 17 | . . . . . 6
⊢
(∀𝑦 ∈
𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) | 
| 30 | 29 | ad2antll 729 | . . . . 5
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) | 
| 31 | 19, 30 | jca 511 | . . . 4
⊢
((∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 ∧ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) → (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) | 
| 32 | 18, 31 | impbida 800 | . . 3
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))))) | 
| 33 |  | vex 3483 | . . . 4
⊢ 𝑧 ∈ V | 
| 34 | 33 | elixp 8945 | . . 3
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 𝐴 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐴)) | 
| 35 |  | elin 3966 | . . . 4
⊢ (𝑧 ∈ (X𝑥 ∈
𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ (𝑧 ∈ X𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 36 | 33 | elixp 8945 | . . . . 5
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 𝐵 ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵)) | 
| 37 |  | eliin 4995 | . . . . . . 7
⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 38 | 37 | elv 3484 | . . . . . 6
⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) | 
| 39 | 33 | elixp 8945 | . . . . . . 7
⊢ (𝑧 ∈ X𝑥 ∈
𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 40 | 39 | ralbii 3092 | . . . . . 6
⊢
(∀𝑦 ∈
𝐼 𝑧 ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 41 | 38, 40 | bitri 275 | . . . . 5
⊢ (𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵) ↔ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵))) | 
| 42 | 36, 41 | anbi12i 628 | . . . 4
⊢ ((𝑧 ∈ X𝑥 ∈
𝐼 𝐵 ∧ 𝑧 ∈ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) | 
| 43 | 35, 42 | bitri 275 | . . 3
⊢ (𝑧 ∈ (X𝑥 ∈
𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)) ↔ ((𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ 𝐵) ∧ ∀𝑦 ∈ 𝐼 (𝑧 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑧‘𝑥) ∈ if(𝑥 = 𝑦, 𝐴, 𝐵)))) | 
| 44 | 32, 34, 43 | 3bitr4g 314 | . 2
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → (𝑧 ∈ X𝑥 ∈ 𝐼 𝐴 ↔ 𝑧 ∈ (X𝑥 ∈ 𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))) | 
| 45 | 44 | eqrdv 2734 | 1
⊢
(∀𝑥 ∈
𝐼 𝐴 ⊆ 𝐵 → X𝑥 ∈ 𝐼 𝐴 = (X𝑥 ∈ 𝐼 𝐵 ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵))) |