MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval3 Structured version   Visualization version   GIF version

Theorem prdsdsval3 16352
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval3.k 𝐾 = (Base‘𝑅)
prdsdsval3.e 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾))
prdsdsval3.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval3 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval3
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . 3 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
7 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
8 eqid 2771 . . 3 (dist‘𝑅) = (dist‘𝑅)
9 prdsdsval3.d . . 3 𝐷 = (dist‘𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9prdsdsval2 16351 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}), ℝ*, < ))
11 eqidd 2772 . . . . . 6 (𝜑𝐼 = 𝐼)
12 prdsdsval3.k . . . . . . . 8 𝐾 = (Base‘𝑅)
131, 2, 3, 4, 5, 12, 6prdsbascl 16350 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾)
141, 2, 3, 4, 5, 12, 7prdsbascl 16350 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝐺𝑥) ∈ 𝐾)
15 prdsdsval3.e . . . . . . . . . . 11 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾))
1615oveqi 6805 . . . . . . . . . 10 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺𝑥))
17 ovres 6946 . . . . . . . . . 10 (((𝐹𝑥) ∈ 𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐹𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
1816, 17syl5eq 2817 . . . . . . . . 9 (((𝐹𝑥) ∈ 𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
1918ex 397 . . . . . . . 8 ((𝐹𝑥) ∈ 𝐾 → ((𝐺𝑥) ∈ 𝐾 → ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2019ral2imi 3096 . . . . . . 7 (∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾 → (∀𝑥𝐼 (𝐺𝑥) ∈ 𝐾 → ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2113, 14, 20sylc 65 . . . . . 6 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
22 mpteq12 4870 . . . . . 6 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2311, 21, 22syl2anc 565 . . . . 5 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2423rneqd 5491 . . . 4 (𝜑 → ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2524uneq1d 3917 . . 3 (𝜑 → (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}))
2625supeq1d 8507 . 2 (𝜑 → sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}), ℝ*, < ))
2710, 26eqtr4d 2808 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  cun 3721  {csn 4316  cmpt 4863   × cxp 5247  ran crn 5250  cres 5251  cfv 6031  (class class class)co 6792  supcsup 8501  0cc0 10137  *cxr 10274   < clt 10275  Basecbs 16063  distcds 16157  Xscprds 16313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-prds 16315
This theorem is referenced by:  prdsxmetlem  22392  prdsmet  22394  prdsbl  22515  prdsbnd  33920  rrnequiv  33962
  Copyright terms: Public domain W3C validator