| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsdsval3 | Structured version Visualization version GIF version | ||
| Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
| prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| prdsdsval3.k | ⊢ 𝐾 = (Base‘𝑅) |
| prdsdsval3.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) |
| prdsdsval3.d | ⊢ 𝐷 = (dist‘𝑌) |
| Ref | Expression |
|---|---|
| prdsdsval3 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsbasmpt2.r | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
| 6 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 8 | eqid 2729 | . . 3 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
| 9 | prdsdsval3.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | prdsdsval2 17423 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| 11 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → 𝐼 = 𝐼) | |
| 12 | prdsdsval3.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑅) | |
| 13 | 1, 2, 3, 4, 5, 12, 6 | prdsbascl 17422 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾) |
| 14 | 1, 2, 3, 4, 5, 12, 7 | prdsbascl 17422 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ∈ 𝐾) |
| 15 | prdsdsval3.e | . . . . . . . . . . 11 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) | |
| 16 | 15 | oveqi 7382 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺‘𝑥)) |
| 17 | ovres 7535 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑥) ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐹‘𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) | |
| 18 | 16, 17 | eqtrid 2776 | . . . . . . . . 9 ⊢ (((𝐹‘𝑥) ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) |
| 19 | 18 | ex 412 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝐾 → ((𝐺‘𝑥) ∈ 𝐾 → ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 20 | 19 | ral2imi 3068 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾 → (∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 21 | 13, 14, 20 | sylc 65 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) |
| 22 | mpteq12 5190 | . . . . . 6 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) | |
| 23 | 11, 21, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 24 | 23 | rneqd 5891 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 25 | 24 | uneq1d 4126 | . . 3 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0})) |
| 26 | 25 | supeq1d 9373 | . 2 ⊢ (𝜑 → sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| 27 | 10, 26 | eqtr4d 2767 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3909 {csn 4585 ↦ cmpt 5183 × cxp 5629 ran crn 5632 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 supcsup 9367 0cc0 11044 ℝ*cxr 11183 < clt 11184 Basecbs 17155 distcds 17205 Xscprds 17384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-prds 17386 |
| This theorem is referenced by: prdsxmetlem 24232 prdsmet 24234 prdsbl 24355 prdsbnd 37760 rrnequiv 37802 |
| Copyright terms: Public domain | W3C validator |