MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval3 Structured version   Visualization version   GIF version

Theorem prdsdsval3 16460
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval3.k 𝐾 = (Base‘𝑅)
prdsdsval3.e 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾))
prdsdsval3.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval3 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval3
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . 3 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
7 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
8 eqid 2799 . . 3 (dist‘𝑅) = (dist‘𝑅)
9 prdsdsval3.d . . 3 𝐷 = (dist‘𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9prdsdsval2 16459 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}), ℝ*, < ))
11 eqidd 2800 . . . . . 6 (𝜑𝐼 = 𝐼)
12 prdsdsval3.k . . . . . . . 8 𝐾 = (Base‘𝑅)
131, 2, 3, 4, 5, 12, 6prdsbascl 16458 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾)
141, 2, 3, 4, 5, 12, 7prdsbascl 16458 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝐺𝑥) ∈ 𝐾)
15 prdsdsval3.e . . . . . . . . . . 11 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾))
1615oveqi 6891 . . . . . . . . . 10 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺𝑥))
17 ovres 7034 . . . . . . . . . 10 (((𝐹𝑥) ∈ 𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐹𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
1816, 17syl5eq 2845 . . . . . . . . 9 (((𝐹𝑥) ∈ 𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
1918ex 402 . . . . . . . 8 ((𝐹𝑥) ∈ 𝐾 → ((𝐺𝑥) ∈ 𝐾 → ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2019ral2imi 3128 . . . . . . 7 (∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾 → (∀𝑥𝐼 (𝐺𝑥) ∈ 𝐾 → ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2113, 14, 20sylc 65 . . . . . 6 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
22 mpteq12 4929 . . . . . 6 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2311, 21, 22syl2anc 580 . . . . 5 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2423rneqd 5556 . . . 4 (𝜑 → ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2524uneq1d 3964 . . 3 (𝜑 → (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}))
2625supeq1d 8594 . 2 (𝜑 → sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}), ℝ*, < ))
2710, 26eqtr4d 2836 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3089  cun 3767  {csn 4368  cmpt 4922   × cxp 5310  ran crn 5313  cres 5314  cfv 6101  (class class class)co 6878  supcsup 8588  0cc0 10224  *cxr 10362   < clt 10363  Basecbs 16184  distcds 16276  Xscprds 16421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-hom 16291  df-cco 16292  df-prds 16423
This theorem is referenced by:  prdsxmetlem  22501  prdsmet  22503  prdsbl  22624  prdsbnd  34079  rrnequiv  34121
  Copyright terms: Public domain W3C validator