![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsdsval3 | Structured version Visualization version GIF version |
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt2.y | β’ π = (πXs(π₯ β πΌ β¦ π )) |
prdsbasmpt2.b | β’ π΅ = (Baseβπ) |
prdsbasmpt2.s | β’ (π β π β π) |
prdsbasmpt2.i | β’ (π β πΌ β π) |
prdsbasmpt2.r | β’ (π β βπ₯ β πΌ π β π) |
prdsdsval2.f | β’ (π β πΉ β π΅) |
prdsdsval2.g | β’ (π β πΊ β π΅) |
prdsdsval3.k | β’ πΎ = (Baseβπ ) |
prdsdsval3.e | β’ πΈ = ((distβπ ) βΎ (πΎ Γ πΎ)) |
prdsdsval3.d | β’ π· = (distβπ) |
Ref | Expression |
---|---|
prdsdsval3 | β’ (π β (πΉπ·πΊ) = sup((ran (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) βͺ {0}), β*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | . . 3 β’ π = (πXs(π₯ β πΌ β¦ π )) | |
2 | prdsbasmpt2.b | . . 3 β’ π΅ = (Baseβπ) | |
3 | prdsbasmpt2.s | . . 3 β’ (π β π β π) | |
4 | prdsbasmpt2.i | . . 3 β’ (π β πΌ β π) | |
5 | prdsbasmpt2.r | . . 3 β’ (π β βπ₯ β πΌ π β π) | |
6 | prdsdsval2.f | . . 3 β’ (π β πΉ β π΅) | |
7 | prdsdsval2.g | . . 3 β’ (π β πΊ β π΅) | |
8 | eqid 2733 | . . 3 β’ (distβπ ) = (distβπ ) | |
9 | prdsdsval3.d | . . 3 β’ π· = (distβπ) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | prdsdsval2 17430 | . 2 β’ (π β (πΉπ·πΊ) = sup((ran (π₯ β πΌ β¦ ((πΉβπ₯)(distβπ )(πΊβπ₯))) βͺ {0}), β*, < )) |
11 | eqidd 2734 | . . . . . 6 β’ (π β πΌ = πΌ) | |
12 | prdsdsval3.k | . . . . . . . 8 β’ πΎ = (Baseβπ ) | |
13 | 1, 2, 3, 4, 5, 12, 6 | prdsbascl 17429 | . . . . . . 7 β’ (π β βπ₯ β πΌ (πΉβπ₯) β πΎ) |
14 | 1, 2, 3, 4, 5, 12, 7 | prdsbascl 17429 | . . . . . . 7 β’ (π β βπ₯ β πΌ (πΊβπ₯) β πΎ) |
15 | prdsdsval3.e | . . . . . . . . . . 11 β’ πΈ = ((distβπ ) βΎ (πΎ Γ πΎ)) | |
16 | 15 | oveqi 7422 | . . . . . . . . . 10 β’ ((πΉβπ₯)πΈ(πΊβπ₯)) = ((πΉβπ₯)((distβπ ) βΎ (πΎ Γ πΎ))(πΊβπ₯)) |
17 | ovres 7573 | . . . . . . . . . 10 β’ (((πΉβπ₯) β πΎ β§ (πΊβπ₯) β πΎ) β ((πΉβπ₯)((distβπ ) βΎ (πΎ Γ πΎ))(πΊβπ₯)) = ((πΉβπ₯)(distβπ )(πΊβπ₯))) | |
18 | 16, 17 | eqtrid 2785 | . . . . . . . . 9 β’ (((πΉβπ₯) β πΎ β§ (πΊβπ₯) β πΎ) β ((πΉβπ₯)πΈ(πΊβπ₯)) = ((πΉβπ₯)(distβπ )(πΊβπ₯))) |
19 | 18 | ex 414 | . . . . . . . 8 β’ ((πΉβπ₯) β πΎ β ((πΊβπ₯) β πΎ β ((πΉβπ₯)πΈ(πΊβπ₯)) = ((πΉβπ₯)(distβπ )(πΊβπ₯)))) |
20 | 19 | ral2imi 3086 | . . . . . . 7 β’ (βπ₯ β πΌ (πΉβπ₯) β πΎ β (βπ₯ β πΌ (πΊβπ₯) β πΎ β βπ₯ β πΌ ((πΉβπ₯)πΈ(πΊβπ₯)) = ((πΉβπ₯)(distβπ )(πΊβπ₯)))) |
21 | 13, 14, 20 | sylc 65 | . . . . . 6 β’ (π β βπ₯ β πΌ ((πΉβπ₯)πΈ(πΊβπ₯)) = ((πΉβπ₯)(distβπ )(πΊβπ₯))) |
22 | mpteq12 5241 | . . . . . 6 β’ ((πΌ = πΌ β§ βπ₯ β πΌ ((πΉβπ₯)πΈ(πΊβπ₯)) = ((πΉβπ₯)(distβπ )(πΊβπ₯))) β (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) = (π₯ β πΌ β¦ ((πΉβπ₯)(distβπ )(πΊβπ₯)))) | |
23 | 11, 21, 22 | syl2anc 585 | . . . . 5 β’ (π β (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) = (π₯ β πΌ β¦ ((πΉβπ₯)(distβπ )(πΊβπ₯)))) |
24 | 23 | rneqd 5938 | . . . 4 β’ (π β ran (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) = ran (π₯ β πΌ β¦ ((πΉβπ₯)(distβπ )(πΊβπ₯)))) |
25 | 24 | uneq1d 4163 | . . 3 β’ (π β (ran (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) βͺ {0}) = (ran (π₯ β πΌ β¦ ((πΉβπ₯)(distβπ )(πΊβπ₯))) βͺ {0})) |
26 | 25 | supeq1d 9441 | . 2 β’ (π β sup((ran (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) βͺ {0}), β*, < ) = sup((ran (π₯ β πΌ β¦ ((πΉβπ₯)(distβπ )(πΊβπ₯))) βͺ {0}), β*, < )) |
27 | 10, 26 | eqtr4d 2776 | 1 β’ (π β (πΉπ·πΊ) = sup((ran (π₯ β πΌ β¦ ((πΉβπ₯)πΈ(πΊβπ₯))) βͺ {0}), β*, < )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 βͺ cun 3947 {csn 4629 β¦ cmpt 5232 Γ cxp 5675 ran crn 5678 βΎ cres 5679 βcfv 6544 (class class class)co 7409 supcsup 9435 0cc0 11110 β*cxr 11247 < clt 11248 Basecbs 17144 distcds 17206 Xscprds 17391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-prds 17393 |
This theorem is referenced by: prdsxmetlem 23874 prdsmet 23876 prdsbl 24000 prdsbnd 36661 rrnequiv 36703 |
Copyright terms: Public domain | W3C validator |