![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsdsval3 | Structured version Visualization version GIF version |
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsdsval3.k | ⊢ 𝐾 = (Base‘𝑅) |
prdsdsval3.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) |
prdsdsval3.d | ⊢ 𝐷 = (dist‘𝑌) |
Ref | Expression |
---|---|
prdsdsval3 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt2.r | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
6 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | eqid 2799 | . . 3 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
9 | prdsdsval3.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | prdsdsval2 16459 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
11 | eqidd 2800 | . . . . . 6 ⊢ (𝜑 → 𝐼 = 𝐼) | |
12 | prdsdsval3.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑅) | |
13 | 1, 2, 3, 4, 5, 12, 6 | prdsbascl 16458 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾) |
14 | 1, 2, 3, 4, 5, 12, 7 | prdsbascl 16458 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ∈ 𝐾) |
15 | prdsdsval3.e | . . . . . . . . . . 11 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) | |
16 | 15 | oveqi 6891 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺‘𝑥)) |
17 | ovres 7034 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑥) ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐹‘𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) | |
18 | 16, 17 | syl5eq 2845 | . . . . . . . . 9 ⊢ (((𝐹‘𝑥) ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) |
19 | 18 | ex 402 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝐾 → ((𝐺‘𝑥) ∈ 𝐾 → ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
20 | 19 | ral2imi 3128 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾 → (∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
21 | 13, 14, 20 | sylc 65 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) |
22 | mpteq12 4929 | . . . . . 6 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) | |
23 | 11, 21, 22 | syl2anc 580 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
24 | 23 | rneqd 5556 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
25 | 24 | uneq1d 3964 | . . 3 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0})) |
26 | 25 | supeq1d 8594 | . 2 ⊢ (𝜑 → sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
27 | 10, 26 | eqtr4d 2836 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∪ cun 3767 {csn 4368 ↦ cmpt 4922 × cxp 5310 ran crn 5313 ↾ cres 5314 ‘cfv 6101 (class class class)co 6878 supcsup 8588 0cc0 10224 ℝ*cxr 10362 < clt 10363 Basecbs 16184 distcds 16276 Xscprds 16421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-prds 16423 |
This theorem is referenced by: prdsxmetlem 22501 prdsmet 22503 prdsbl 22624 prdsbnd 34079 rrnequiv 34121 |
Copyright terms: Public domain | W3C validator |