MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval3 Structured version   Visualization version   GIF version

Theorem prdsdsval3 16748
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval3.k 𝐾 = (Base‘𝑅)
prdsdsval3.e 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾))
prdsdsval3.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval3 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝐾(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval3
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . 3 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
7 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
8 eqid 2826 . . 3 (dist‘𝑅) = (dist‘𝑅)
9 prdsdsval3.d . . 3 𝐷 = (dist‘𝑌)
101, 2, 3, 4, 5, 6, 7, 8, 9prdsdsval2 16747 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}), ℝ*, < ))
11 eqidd 2827 . . . . . 6 (𝜑𝐼 = 𝐼)
12 prdsdsval3.k . . . . . . . 8 𝐾 = (Base‘𝑅)
131, 2, 3, 4, 5, 12, 6prdsbascl 16746 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾)
141, 2, 3, 4, 5, 12, 7prdsbascl 16746 . . . . . . 7 (𝜑 → ∀𝑥𝐼 (𝐺𝑥) ∈ 𝐾)
15 prdsdsval3.e . . . . . . . . . . 11 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾))
1615oveqi 7161 . . . . . . . . . 10 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺𝑥))
17 ovres 7304 . . . . . . . . . 10 (((𝐹𝑥) ∈ 𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐹𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
1816, 17syl5eq 2873 . . . . . . . . 9 (((𝐹𝑥) ∈ 𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
1918ex 413 . . . . . . . 8 ((𝐹𝑥) ∈ 𝐾 → ((𝐺𝑥) ∈ 𝐾 → ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2019ral2imi 3161 . . . . . . 7 (∀𝑥𝐼 (𝐹𝑥) ∈ 𝐾 → (∀𝑥𝐼 (𝐺𝑥) ∈ 𝐾 → ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2113, 14, 20sylc 65 . . . . . 6 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥)))
22 mpteq12 5150 . . . . . 6 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)𝐸(𝐺𝑥)) = ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2311, 21, 22syl2anc 584 . . . . 5 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2423rneqd 5807 . . . 4 (𝜑 → ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))))
2524uneq1d 4142 . . 3 (𝜑 → (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}))
2625supeq1d 8899 . 2 (𝜑 → sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘𝑅)(𝐺𝑥))) ∪ {0}), ℝ*, < ))
2710, 26eqtr4d 2864 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143  cun 3938  {csn 4564  cmpt 5143   × cxp 5552  ran crn 5555  cres 5556  cfv 6352  (class class class)co 7148  supcsup 8893  0cc0 10526  *cxr 10663   < clt 10664  Basecbs 16473  distcds 16564  Xscprds 16709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-prds 16711
This theorem is referenced by:  prdsxmetlem  22893  prdsmet  22895  prdsbl  23016  prdsbnd  34939  rrnequiv  34981
  Copyright terms: Public domain W3C validator