| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsdsval3 | Structured version Visualization version GIF version | ||
| Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
| prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| prdsdsval3.k | ⊢ 𝐾 = (Base‘𝑅) |
| prdsdsval3.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) |
| prdsdsval3.d | ⊢ 𝐷 = (dist‘𝑌) |
| Ref | Expression |
|---|---|
| prdsdsval3 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsbasmpt2.r | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
| 6 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 7 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 8 | eqid 2735 | . . 3 ⊢ (dist‘𝑅) = (dist‘𝑅) | |
| 9 | prdsdsval3.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | prdsdsval2 17498 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| 11 | eqidd 2736 | . . . . . 6 ⊢ (𝜑 → 𝐼 = 𝐼) | |
| 12 | prdsdsval3.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑅) | |
| 13 | 1, 2, 3, 4, 5, 12, 6 | prdsbascl 17497 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾) |
| 14 | 1, 2, 3, 4, 5, 12, 7 | prdsbascl 17497 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ∈ 𝐾) |
| 15 | prdsdsval3.e | . . . . . . . . . . 11 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝐾 × 𝐾)) | |
| 16 | 15 | oveqi 7418 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺‘𝑥)) |
| 17 | ovres 7573 | . . . . . . . . . 10 ⊢ (((𝐹‘𝑥) ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐹‘𝑥)((dist‘𝑅) ↾ (𝐾 × 𝐾))(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) | |
| 18 | 16, 17 | eqtrid 2782 | . . . . . . . . 9 ⊢ (((𝐹‘𝑥) ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) |
| 19 | 18 | ex 412 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) ∈ 𝐾 → ((𝐺‘𝑥) ∈ 𝐾 → ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 20 | 19 | ral2imi 3075 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾 → (∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 21 | 13, 14, 20 | sylc 65 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) |
| 22 | mpteq12 5208 | . . . . . 6 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)𝐸(𝐺‘𝑥)) = ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) | |
| 23 | 11, 21, 22 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 24 | 23 | rneqd 5918 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥)))) |
| 25 | 24 | uneq1d 4142 | . . 3 ⊢ (𝜑 → (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0})) |
| 26 | 25 | supeq1d 9458 | . 2 ⊢ (𝜑 → sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘𝑅)(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| 27 | 10, 26 | eqtr4d 2773 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∪ cun 3924 {csn 4601 ↦ cmpt 5201 × cxp 5652 ran crn 5655 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 supcsup 9452 0cc0 11129 ℝ*cxr 11268 < clt 11269 Basecbs 17228 distcds 17280 Xscprds 17459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-prds 17461 |
| This theorem is referenced by: prdsxmetlem 24307 prdsmet 24309 prdsbl 24430 prdsbnd 37817 rrnequiv 37859 |
| Copyright terms: Public domain | W3C validator |