MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Structured version   Visualization version   GIF version

Theorem axcc4 9576
Description: A version of axcc3 9575 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1 𝐴 ∈ V
axcc4.2 𝑁 ≈ ω
axcc4.3 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4 𝐴 ∈ V
21rabex 5037 . . 3 {𝑥𝐴𝜑} ∈ V
3 axcc4.2 . . 3 𝑁 ≈ ω
42, 3axcc3 9575 . 2 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
5 rabn0 4187 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
6 pm2.27 42 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
75, 6sylbir 227 . . . . . . . . 9 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
8 axcc4.3 . . . . . . . . . 10 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
98elrab 3585 . . . . . . . . 9 ((𝑓𝑛) ∈ {𝑥𝐴𝜑} ↔ ((𝑓𝑛) ∈ 𝐴𝜓))
107, 9syl6ib 243 . . . . . . . 8 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ((𝑓𝑛) ∈ 𝐴𝜓)))
1110ral2imi 3156 . . . . . . 7 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓)))
12 simpl 476 . . . . . . . 8 (((𝑓𝑛) ∈ 𝐴𝜓) → (𝑓𝑛) ∈ 𝐴)
1312ralimi 3161 . . . . . . 7 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1411, 13syl6 35 . . . . . 6 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1514anim2d 607 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)))
16 ffnfv 6637 . . . . 5 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1715, 16syl6ibr 244 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → 𝑓:𝑁𝐴))
18 simpr 479 . . . . . . 7 (((𝑓𝑛) ∈ 𝐴𝜓) → 𝜓)
1918ralimi 3161 . . . . . 6 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 𝜓)
2011, 19syl6 35 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 𝜓))
2120adantld 486 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∀𝑛𝑁 𝜓))
2217, 21jcad 510 . . 3 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322eximdv 2018 . 2 (∀𝑛𝑁𝑥𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
244, 23mpi 20 1 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wex 1880  wcel 2166  wne 2999  wral 3117  wrex 3118  {crab 3121  Vcvv 3414  c0 4144   class class class wbr 4873   Fn wfn 6118  wf 6119  cfv 6123  ωcom 7326  cen 8219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cc 9572
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-om 7327  df-2nd 7429  df-er 8009  df-en 8223
This theorem is referenced by:  axcc4dom  9578  supcvg  14962  1stcelcls  21635  iscmet3  23461  ovoliunlem3  23670  itg2seq  23908  nmounbseqi  28187  nmobndseqi  28189  minvecolem5  28292  heibor  34162
  Copyright terms: Public domain W3C validator