MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Structured version   Visualization version   GIF version

Theorem axcc4 10476
Description: A version of axcc3 10475 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1 𝐴 ∈ V
axcc4.2 𝑁 ≈ ω
axcc4.3 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4 𝐴 ∈ V
21rabex 5344 . . 3 {𝑥𝐴𝜑} ∈ V
3 axcc4.2 . . 3 𝑁 ≈ ω
42, 3axcc3 10475 . 2 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
5 rabn0 4394 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
6 pm2.27 42 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
75, 6sylbir 235 . . . . . . . . 9 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
8 axcc4.3 . . . . . . . . . 10 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
98elrab 3694 . . . . . . . . 9 ((𝑓𝑛) ∈ {𝑥𝐴𝜑} ↔ ((𝑓𝑛) ∈ 𝐴𝜓))
107, 9imbitrdi 251 . . . . . . . 8 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ((𝑓𝑛) ∈ 𝐴𝜓)))
1110ral2imi 3082 . . . . . . 7 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓)))
12 simpl 482 . . . . . . . 8 (((𝑓𝑛) ∈ 𝐴𝜓) → (𝑓𝑛) ∈ 𝐴)
1312ralimi 3080 . . . . . . 7 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1411, 13syl6 35 . . . . . 6 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1514anim2d 612 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)))
16 ffnfv 7138 . . . . 5 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1715, 16imbitrrdi 252 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → 𝑓:𝑁𝐴))
18 simpr 484 . . . . . . 7 (((𝑓𝑛) ∈ 𝐴𝜓) → 𝜓)
1918ralimi 3080 . . . . . 6 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 𝜓)
2011, 19syl6 35 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 𝜓))
2120adantld 490 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∀𝑛𝑁 𝜓))
2217, 21jcad 512 . . 3 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322eximdv 1914 . 2 (∀𝑛𝑁𝑥𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
244, 23mpi 20 1 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  c0 4338   class class class wbr 5147   Fn wfn 6557  wf 6558  cfv 6562  ωcom 7886  cen 8980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-om 7887  df-2nd 8013  df-er 8743  df-en 8984
This theorem is referenced by:  axcc4dom  10478  supcvg  15888  1stcelcls  23484  iscmet3  25340  ovoliunlem3  25552  itg2seq  25791  nmounbseqi  30805  nmobndseqi  30807  minvecolem5  30909  heibor  37807
  Copyright terms: Public domain W3C validator