Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcc4 | Structured version Visualization version GIF version |
Description: A version of axcc3 10125 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.) |
Ref | Expression |
---|---|
axcc4.1 | ⊢ 𝐴 ∈ V |
axcc4.2 | ⊢ 𝑁 ≈ ω |
axcc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
axcc4 | ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axcc4.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rabex 5251 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V |
3 | axcc4.2 | . . 3 ⊢ 𝑁 ≈ ω | |
4 | 2, 3 | axcc3 10125 | . 2 ⊢ ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
5 | rabn0 4316 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
6 | pm2.27 42 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) | |
7 | 5, 6 | sylbir 234 | . . . . . . . . 9 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
8 | axcc4.3 | . . . . . . . . . 10 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) | |
9 | 8 | elrab 3617 | . . . . . . . . 9 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓)) |
10 | 7, 9 | syl6ib 250 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓))) |
11 | 10 | ral2imi 3081 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓))) |
12 | simpl 482 | . . . . . . . 8 ⊢ (((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → (𝑓‘𝑛) ∈ 𝐴) | |
13 | 12 | ralimi 3086 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
14 | 11, 13 | syl6 35 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
15 | 14 | anim2d 611 | . . . . 5 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴))) |
16 | ffnfv 6974 | . . . . 5 ⊢ (𝑓:𝑁⟶𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) | |
17 | 15, 16 | syl6ibr 251 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → 𝑓:𝑁⟶𝐴)) |
18 | simpr 484 | . . . . . . 7 ⊢ (((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → 𝜓) | |
19 | 18 | ralimi 3086 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → ∀𝑛 ∈ 𝑁 𝜓) |
20 | 11, 19 | syl6 35 | . . . . 5 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 𝜓)) |
21 | 20 | adantld 490 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → ∀𝑛 ∈ 𝑁 𝜓)) |
22 | 17, 21 | jcad 512 | . . 3 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
23 | 22 | eximdv 1921 | . 2 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
24 | 4, 23 | mpi 20 | 1 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ∅c0 4253 class class class wbr 5070 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ωcom 7687 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-2nd 7805 df-er 8456 df-en 8692 |
This theorem is referenced by: axcc4dom 10128 supcvg 15496 1stcelcls 22520 iscmet3 24362 ovoliunlem3 24573 itg2seq 24812 nmounbseqi 29040 nmobndseqi 29042 minvecolem5 29144 heibor 35906 |
Copyright terms: Public domain | W3C validator |