Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axcc4 | Structured version Visualization version GIF version |
Description: A version of axcc3 10077 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.) |
Ref | Expression |
---|---|
axcc4.1 | ⊢ 𝐴 ∈ V |
axcc4.2 | ⊢ 𝑁 ≈ ω |
axcc4.3 | ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
axcc4 | ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axcc4.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | rabex 5240 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V |
3 | axcc4.2 | . . 3 ⊢ 𝑁 ≈ ω | |
4 | 2, 3 | axcc3 10077 | . 2 ⊢ ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
5 | rabn0 4315 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
6 | pm2.27 42 | . . . . . . . . . 10 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) | |
7 | 5, 6 | sylbir 238 | . . . . . . . . 9 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
8 | axcc4.3 | . . . . . . . . . 10 ⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) | |
9 | 8 | elrab 3615 | . . . . . . . . 9 ⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓)) |
10 | 7, 9 | syl6ib 254 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓))) |
11 | 10 | ral2imi 3080 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓))) |
12 | simpl 486 | . . . . . . . 8 ⊢ (((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → (𝑓‘𝑛) ∈ 𝐴) | |
13 | 12 | ralimi 3085 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
14 | 11, 13 | syl6 35 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
15 | 14 | anim2d 615 | . . . . 5 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴))) |
16 | ffnfv 6954 | . . . . 5 ⊢ (𝑓:𝑁⟶𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) | |
17 | 15, 16 | syl6ibr 255 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → 𝑓:𝑁⟶𝐴)) |
18 | simpr 488 | . . . . . . 7 ⊢ (((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → 𝜓) | |
19 | 18 | ralimi 3085 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → ∀𝑛 ∈ 𝑁 𝜓) |
20 | 11, 19 | syl6 35 | . . . . 5 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 𝜓)) |
21 | 20 | adantld 494 | . . . 4 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → ∀𝑛 ∈ 𝑁 𝜓)) |
22 | 17, 21 | jcad 516 | . . 3 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
23 | 22 | eximdv 1925 | . 2 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
24 | 4, 23 | mpi 20 | 1 ⊢ (∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2111 ≠ wne 2941 ∀wral 3062 ∃wrex 3063 {crab 3066 Vcvv 3421 ∅c0 4252 class class class wbr 5068 Fn wfn 6393 ⟶wf 6394 ‘cfv 6398 ωcom 7663 ≈ cen 8644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cc 10074 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-om 7664 df-2nd 7781 df-er 8412 df-en 8648 |
This theorem is referenced by: axcc4dom 10080 supcvg 15448 1stcelcls 22385 iscmet3 24217 ovoliunlem3 24428 itg2seq 24667 nmounbseqi 28885 nmobndseqi 28887 minvecolem5 28989 heibor 35746 |
Copyright terms: Public domain | W3C validator |