MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Structured version   Visualization version   GIF version

Theorem axcc4 10352
Description: A version of axcc3 10351 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1 𝐴 ∈ V
axcc4.2 𝑁 ≈ ω
axcc4.3 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4 𝐴 ∈ V
21rabex 5281 . . 3 {𝑥𝐴𝜑} ∈ V
3 axcc4.2 . . 3 𝑁 ≈ ω
42, 3axcc3 10351 . 2 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
5 rabn0 4342 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
6 pm2.27 42 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
75, 6sylbir 235 . . . . . . . . 9 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
8 axcc4.3 . . . . . . . . . 10 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
98elrab 3650 . . . . . . . . 9 ((𝑓𝑛) ∈ {𝑥𝐴𝜑} ↔ ((𝑓𝑛) ∈ 𝐴𝜓))
107, 9imbitrdi 251 . . . . . . . 8 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ((𝑓𝑛) ∈ 𝐴𝜓)))
1110ral2imi 3068 . . . . . . 7 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓)))
12 simpl 482 . . . . . . . 8 (((𝑓𝑛) ∈ 𝐴𝜓) → (𝑓𝑛) ∈ 𝐴)
1312ralimi 3066 . . . . . . 7 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1411, 13syl6 35 . . . . . 6 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1514anim2d 612 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)))
16 ffnfv 7057 . . . . 5 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1715, 16imbitrrdi 252 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → 𝑓:𝑁𝐴))
18 simpr 484 . . . . . . 7 (((𝑓𝑛) ∈ 𝐴𝜓) → 𝜓)
1918ralimi 3066 . . . . . 6 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 𝜓)
2011, 19syl6 35 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 𝜓))
2120adantld 490 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∀𝑛𝑁 𝜓))
2217, 21jcad 512 . . 3 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322eximdv 1917 . 2 (∀𝑛𝑁𝑥𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
244, 23mpi 20 1 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  c0 4286   class class class wbr 5095   Fn wfn 6481  wf 6482  cfv 6486  ωcom 7806  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-2nd 7932  df-er 8632  df-en 8880
This theorem is referenced by:  axcc4dom  10354  supcvg  15781  1stcelcls  23364  iscmet3  25209  ovoliunlem3  25421  itg2seq  25659  nmounbseqi  30739  nmobndseqi  30741  minvecolem5  30843  heibor  37800
  Copyright terms: Public domain W3C validator