Proof of Theorem axcc4
Step | Hyp | Ref
| Expression |
1 | | axcc4.1 |
. . . 4
⊢ 𝐴 ∈ V |
2 | 1 | rabex 5256 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V |
3 | | axcc4.2 |
. . 3
⊢ 𝑁 ≈
ω |
4 | 2, 3 | axcc3 10194 |
. 2
⊢
∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
5 | | rabn0 4319 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
6 | | pm2.27 42 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
7 | 5, 6 | sylbir 234 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 𝜑 → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
8 | | axcc4.3 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑓‘𝑛) → (𝜑 ↔ 𝜓)) |
9 | 8 | elrab 3624 |
. . . . . . . . 9
⊢ ((𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓)) |
10 | 7, 9 | syl6ib 250 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 𝜑 → (({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓))) |
11 | 10 | ral2imi 3082 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓))) |
12 | | simpl 483 |
. . . . . . . 8
⊢ (((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → (𝑓‘𝑛) ∈ 𝐴) |
13 | 12 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴) |
14 | 11, 13 | syl6 35 |
. . . . . 6
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
15 | 14 | anim2d 612 |
. . . . 5
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴))) |
16 | | ffnfv 6992 |
. . . . 5
⊢ (𝑓:𝑁⟶𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐴)) |
17 | 15, 16 | syl6ibr 251 |
. . . 4
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → 𝑓:𝑁⟶𝐴)) |
18 | | simpr 485 |
. . . . . . 7
⊢ (((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → 𝜓) |
19 | 18 | ralimi 3087 |
. . . . . 6
⊢
(∀𝑛 ∈
𝑁 ((𝑓‘𝑛) ∈ 𝐴 ∧ 𝜓) → ∀𝑛 ∈ 𝑁 𝜓) |
20 | 11, 19 | syl6 35 |
. . . . 5
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) → ∀𝑛 ∈ 𝑁 𝜓)) |
21 | 20 | adantld 491 |
. . . 4
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → ∀𝑛 ∈ 𝑁 𝜓)) |
22 | 17, 21 | jcad 513 |
. . 3
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → (𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
23 | 22 | eximdv 1920 |
. 2
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → (𝑓‘𝑛) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓))) |
24 | 4, 23 | mpi 20 |
1
⊢
(∀𝑛 ∈
𝑁 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜓)) |