Proof of Theorem ntrneik3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dfss3 3972 | . . . . . 6
⊢ (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))) | 
| 2 |  | ntrnei.o | . . . . . . . . . . . . . 14
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | 
| 3 |  | ntrnei.f | . . . . . . . . . . . . . 14
⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | 
| 4 |  | ntrnei.r | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼𝐹𝑁) | 
| 5 | 2, 3, 4 | ntrneiiex 44089 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | 
| 6 |  | elmapi 8889 | . . . . . . . . . . . . 13
⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫
𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | 
| 7 | 5, 6 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | 
| 8 | 7 | ffvelcdmda 7104 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) | 
| 9 | 8 | elpwid 4609 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ⊆ 𝐵) | 
| 10 |  | ssinss1 4246 | . . . . . . . . . 10
⊢ ((𝐼‘𝑠) ⊆ 𝐵 → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵) | 
| 11 | 9, 10 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵) | 
| 12 | 11 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵) | 
| 13 |  | ralss 4058 | . . . . . . . 8
⊢ (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))))) | 
| 14 | 12, 13 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))))) | 
| 15 |  | elin 3967 | . . . . . . . . . 10
⊢ (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ (𝑥 ∈ (𝐼‘𝑠) ∧ 𝑥 ∈ (𝐼‘𝑡))) | 
| 16 | 4 | ad3antrrr 730 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) | 
| 17 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 18 |  | simpllr 776 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑠 ∈ 𝒫 𝐵) | 
| 19 | 2, 3, 16, 17, 18 | ntrneiel 44094 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑠) ↔ 𝑠 ∈ (𝑁‘𝑥))) | 
| 20 |  | simplr 769 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑡 ∈ 𝒫 𝐵) | 
| 21 | 2, 3, 16, 17, 20 | ntrneiel 44094 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘𝑡) ↔ 𝑡 ∈ (𝑁‘𝑥))) | 
| 22 | 19, 21 | anbi12d 632 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ (𝐼‘𝑠) ∧ 𝑥 ∈ (𝐼‘𝑡)) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)))) | 
| 23 | 15, 22 | bitrid 283 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)))) | 
| 24 | 2, 3, 4 | ntrneibex 44086 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ V) | 
| 25 | 24 | ad3antrrr 730 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ V) | 
| 26 | 18 | elpwid 4609 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑠 ⊆ 𝐵) | 
| 27 |  | ssinss1 4246 | . . . . . . . . . . . 12
⊢ (𝑠 ⊆ 𝐵 → (𝑠 ∩ 𝑡) ⊆ 𝐵) | 
| 28 | 26, 27 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑠 ∩ 𝑡) ⊆ 𝐵) | 
| 29 | 25, 28 | sselpwd 5328 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑠 ∩ 𝑡) ∈ 𝒫 𝐵) | 
| 30 | 2, 3, 16, 17, 29 | ntrneiel 44094 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥))) | 
| 31 | 23, 30 | imbi12d 344 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))) ↔ ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 32 | 31 | ralbidva 3176 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ 𝐵 (𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) → 𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡))) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 33 | 14, 32 | bitrd 279 | . . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ ((𝐼‘𝑠) ∩ (𝐼‘𝑡))𝑥 ∈ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 34 | 1, 33 | bitrid 283 | . . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 35 | 34 | ralbidva 3176 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 36 |  | ralcom 3289 | . . . 4
⊢
(∀𝑡 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 ((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥))) | 
| 37 | 35, 36 | bitrdi 287 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 38 | 37 | ralbidva 3176 | . 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | 
| 39 |  | ralcom 3289 | . 2
⊢
(∀𝑠 ∈
𝒫 𝐵∀𝑥 ∈ 𝐵 ∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥))) | 
| 40 | 38, 39 | bitrdi 287 | 1
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) |