MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1p Structured version   Visualization version   GIF version

Theorem acsfn1p 20800
Description: Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
acsfn1p ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝐸,𝑎   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1p
StepHypRef Expression
1 riinrab 5084 . . 3 (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎)}
2 inss2 4238 . . . . . . . . . 10 (𝑋𝑌) ⊆ 𝑌
32sseli 3979 . . . . . . . . 9 (𝑏 ∈ (𝑋𝑌) → 𝑏𝑌)
43biantrud 531 . . . . . . . 8 (𝑏 ∈ (𝑋𝑌) → (𝑏𝑎 ↔ (𝑏𝑎𝑏𝑌)))
5 vex 3484 . . . . . . . . . 10 𝑏 ∈ V
65snss 4785 . . . . . . . . 9 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
76bicomi 224 . . . . . . . 8 ({𝑏} ⊆ 𝑎𝑏𝑎)
8 elin 3967 . . . . . . . 8 (𝑏 ∈ (𝑎𝑌) ↔ (𝑏𝑎𝑏𝑌))
94, 7, 83bitr4g 314 . . . . . . 7 (𝑏 ∈ (𝑋𝑌) → ({𝑏} ⊆ 𝑎𝑏 ∈ (𝑎𝑌)))
109imbi1d 341 . . . . . 6 (𝑏 ∈ (𝑋𝑌) → (({𝑏} ⊆ 𝑎𝐸𝑎) ↔ (𝑏 ∈ (𝑎𝑌) → 𝐸𝑎)))
1110ralbiia 3091 . . . . 5 (∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎) ↔ ∀𝑏 ∈ (𝑋𝑌)(𝑏 ∈ (𝑎𝑌) → 𝐸𝑎))
12 elpwi 4607 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
1312ssrind 4244 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑌) ⊆ (𝑋𝑌))
1413adantl 481 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎𝑌) ⊆ (𝑋𝑌))
15 ralss 4058 . . . . . 6 ((𝑎𝑌) ⊆ (𝑋𝑌) → (∀𝑏 ∈ (𝑎𝑌)𝐸𝑎 ↔ ∀𝑏 ∈ (𝑋𝑌)(𝑏 ∈ (𝑎𝑌) → 𝐸𝑎)))
1614, 15syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑎𝑌)𝐸𝑎 ↔ ∀𝑏 ∈ (𝑋𝑌)(𝑏 ∈ (𝑎𝑌) → 𝐸𝑎)))
1711, 16bitr4id 290 . . . 4 (((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎) ↔ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎))
1817rabbidva 3443 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎})
191, 18eqtrid 2789 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎})
20 mreacs 17701 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
2120adantr 480 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
22 ssralv 4052 . . . . . 6 ((𝑋𝑌) ⊆ 𝑌 → (∀𝑏𝑌 𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌)𝐸𝑋))
232, 22ax-mp 5 . . . . 5 (∀𝑏𝑌 𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌)𝐸𝑋)
24 simpll 767 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → 𝑋𝑉)
25 simpr 484 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → 𝐸𝑋)
26 inss1 4237 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
2726sseli 3979 . . . . . . . . . 10 (𝑏 ∈ (𝑋𝑌) → 𝑏𝑋)
2827ad2antlr 727 . . . . . . . . 9 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → 𝑏𝑋)
2928snssd 4809 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
30 snfi 9083 . . . . . . . . 9 {𝑏} ∈ Fin
3130a1i 11 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
32 acsfn 17702 . . . . . . . 8 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3324, 25, 29, 31, 32syl22anc 839 . . . . . . 7 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3433ex 412 . . . . . 6 ((𝑋𝑉𝑏 ∈ (𝑋𝑌)) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3534ralimdva 3167 . . . . 5 (𝑋𝑉 → (∀𝑏 ∈ (𝑋𝑌)𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3623, 35syl5 34 . . . 4 (𝑋𝑉 → (∀𝑏𝑌 𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3736imp 406 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
38 mreriincl 17641 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3921, 37, 38syl2anc 584 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4019, 39eqeltrrd 2842 1 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  {crab 3436  cin 3950  wss 3951  𝒫 cpw 4600  {csn 4626   ciin 4992  cfv 6561  Fincfn 8985  Moorecmre 17625  ACScacs 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-en 8986  df-fin 8989  df-mre 17629  df-mrc 17630  df-acs 17632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator