MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1p Structured version   Visualization version   GIF version

Theorem acsfn1p 20684
Description: Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
acsfn1p ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝐸,𝑎   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1p
StepHypRef Expression
1 riinrab 5033 . . 3 (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎)}
2 inss2 4189 . . . . . . . . . 10 (𝑋𝑌) ⊆ 𝑌
32sseli 3931 . . . . . . . . 9 (𝑏 ∈ (𝑋𝑌) → 𝑏𝑌)
43biantrud 531 . . . . . . . 8 (𝑏 ∈ (𝑋𝑌) → (𝑏𝑎 ↔ (𝑏𝑎𝑏𝑌)))
5 vex 3440 . . . . . . . . . 10 𝑏 ∈ V
65snss 4736 . . . . . . . . 9 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
76bicomi 224 . . . . . . . 8 ({𝑏} ⊆ 𝑎𝑏𝑎)
8 elin 3919 . . . . . . . 8 (𝑏 ∈ (𝑎𝑌) ↔ (𝑏𝑎𝑏𝑌))
94, 7, 83bitr4g 314 . . . . . . 7 (𝑏 ∈ (𝑋𝑌) → ({𝑏} ⊆ 𝑎𝑏 ∈ (𝑎𝑌)))
109imbi1d 341 . . . . . 6 (𝑏 ∈ (𝑋𝑌) → (({𝑏} ⊆ 𝑎𝐸𝑎) ↔ (𝑏 ∈ (𝑎𝑌) → 𝐸𝑎)))
1110ralbiia 3073 . . . . 5 (∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎) ↔ ∀𝑏 ∈ (𝑋𝑌)(𝑏 ∈ (𝑎𝑌) → 𝐸𝑎))
12 elpwi 4558 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
1312ssrind 4195 . . . . . . 7 (𝑎 ∈ 𝒫 𝑋 → (𝑎𝑌) ⊆ (𝑋𝑌))
1413adantl 481 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎𝑌) ⊆ (𝑋𝑌))
15 ralss 4010 . . . . . 6 ((𝑎𝑌) ⊆ (𝑋𝑌) → (∀𝑏 ∈ (𝑎𝑌)𝐸𝑎 ↔ ∀𝑏 ∈ (𝑋𝑌)(𝑏 ∈ (𝑎𝑌) → 𝐸𝑎)))
1614, 15syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑎𝑌)𝐸𝑎 ↔ ∀𝑏 ∈ (𝑋𝑌)(𝑏 ∈ (𝑎𝑌) → 𝐸𝑎)))
1711, 16bitr4id 290 . . . 4 (((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎) ↔ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎))
1817rabbidva 3401 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋𝑌)({𝑏} ⊆ 𝑎𝐸𝑎)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎})
191, 18eqtrid 2776 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎})
20 mreacs 17564 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
2120adantr 480 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
22 ssralv 4004 . . . . . 6 ((𝑋𝑌) ⊆ 𝑌 → (∀𝑏𝑌 𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌)𝐸𝑋))
232, 22ax-mp 5 . . . . 5 (∀𝑏𝑌 𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌)𝐸𝑋)
24 simpll 766 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → 𝑋𝑉)
25 simpr 484 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → 𝐸𝑋)
26 inss1 4188 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
2726sseli 3931 . . . . . . . . . 10 (𝑏 ∈ (𝑋𝑌) → 𝑏𝑋)
2827ad2antlr 727 . . . . . . . . 9 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → 𝑏𝑋)
2928snssd 4760 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
30 snfi 8968 . . . . . . . . 9 {𝑏} ∈ Fin
3130a1i 11 . . . . . . . 8 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
32 acsfn 17565 . . . . . . . 8 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3324, 25, 29, 31, 32syl22anc 838 . . . . . . 7 (((𝑋𝑉𝑏 ∈ (𝑋𝑌)) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3433ex 412 . . . . . 6 ((𝑋𝑉𝑏 ∈ (𝑋𝑌)) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3534ralimdva 3141 . . . . 5 (𝑋𝑉 → (∀𝑏 ∈ (𝑋𝑌)𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3623, 35syl5 34 . . . 4 (𝑋𝑉 → (∀𝑏𝑌 𝐸𝑋 → ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3736imp 406 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
38 mreriincl 17500 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3921, 37, 38syl2anc 584 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → (𝒫 𝑋 𝑏 ∈ (𝑋𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4019, 39eqeltrrd 2829 1 ((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  {crab 3394  cin 3902  wss 3903  𝒫 cpw 4551  {csn 4577   ciin 4942  cfv 6482  Fincfn 8872  Moorecmre 17484  ACScacs 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876  df-mre 17488  df-mrc 17489  df-acs 17491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator