Proof of Theorem acsfn1p
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | riinrab 5084 | . . 3
⊢
(𝒫 𝑋 ∩
∩ 𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} | 
| 2 |  | inss2 4238 | . . . . . . . . . 10
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 | 
| 3 | 2 | sseli 3979 | . . . . . . . . 9
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → 𝑏 ∈ 𝑌) | 
| 4 | 3 | biantrud 531 | . . . . . . . 8
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → (𝑏 ∈ 𝑎 ↔ (𝑏 ∈ 𝑎 ∧ 𝑏 ∈ 𝑌))) | 
| 5 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑏 ∈ V | 
| 6 | 5 | snss 4785 | . . . . . . . . 9
⊢ (𝑏 ∈ 𝑎 ↔ {𝑏} ⊆ 𝑎) | 
| 7 | 6 | bicomi 224 | . . . . . . . 8
⊢ ({𝑏} ⊆ 𝑎 ↔ 𝑏 ∈ 𝑎) | 
| 8 |  | elin 3967 | . . . . . . . 8
⊢ (𝑏 ∈ (𝑎 ∩ 𝑌) ↔ (𝑏 ∈ 𝑎 ∧ 𝑏 ∈ 𝑌)) | 
| 9 | 4, 7, 8 | 3bitr4g 314 | . . . . . . 7
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → ({𝑏} ⊆ 𝑎 ↔ 𝑏 ∈ (𝑎 ∩ 𝑌))) | 
| 10 | 9 | imbi1d 341 | . . . . . 6
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → (({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎) ↔ (𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎))) | 
| 11 | 10 | ralbiia 3091 | . . . . 5
⊢
(∀𝑏 ∈
(𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎) ↔ ∀𝑏 ∈ (𝑋 ∩ 𝑌)(𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎)) | 
| 12 |  | elpwi 4607 | . . . . . . . 8
⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) | 
| 13 | 12 | ssrind 4244 | . . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∩ 𝑌) ⊆ (𝑋 ∩ 𝑌)) | 
| 14 | 13 | adantl 481 | . . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∩ 𝑌) ⊆ (𝑋 ∩ 𝑌)) | 
| 15 |  | ralss 4058 | . . . . . 6
⊢ ((𝑎 ∩ 𝑌) ⊆ (𝑋 ∩ 𝑌) → (∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ (𝑋 ∩ 𝑌)(𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎))) | 
| 16 | 14, 15 | syl 17 | . . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ (𝑋 ∩ 𝑌)(𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎))) | 
| 17 | 11, 16 | bitr4id 290 | . . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎) ↔ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎)) | 
| 18 | 17 | rabbidva 3443 | . . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎}) | 
| 19 | 1, 18 | eqtrid 2789 | . 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎}) | 
| 20 |  | mreacs 17701 | . . . 4
⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | 
| 21 | 20 | adantr 480 | . . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) | 
| 22 |  | ssralv 4052 | . . . . . 6
⊢ ((𝑋 ∩ 𝑌) ⊆ 𝑌 → (∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌)𝐸 ∈ 𝑋)) | 
| 23 | 2, 22 | ax-mp 5 | . . . . 5
⊢
(∀𝑏 ∈
𝑌 𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌)𝐸 ∈ 𝑋) | 
| 24 |  | simpll 767 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → 𝑋 ∈ 𝑉) | 
| 25 |  | simpr 484 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → 𝐸 ∈ 𝑋) | 
| 26 |  | inss1 4237 | . . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 | 
| 27 | 26 | sseli 3979 | . . . . . . . . . 10
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → 𝑏 ∈ 𝑋) | 
| 28 | 27 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → 𝑏 ∈ 𝑋) | 
| 29 | 28 | snssd 4809 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → {𝑏} ⊆ 𝑋) | 
| 30 |  | snfi 9083 | . . . . . . . . 9
⊢ {𝑏} ∈ Fin | 
| 31 | 30 | a1i 11 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → {𝑏} ∈ Fin) | 
| 32 |  | acsfn 17702 | . . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) | 
| 33 | 24, 25, 29, 31, 32 | syl22anc 839 | . . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) | 
| 34 | 33 | ex 412 | . . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) → (𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) | 
| 35 | 34 | ralimdva 3167 | . . . . 5
⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ (𝑋 ∩ 𝑌)𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) | 
| 36 | 23, 35 | syl5 34 | . . . 4
⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) | 
| 37 | 36 | imp 406 | . . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) | 
| 38 |  | mreriincl 17641 | . . 3
⊢
(((ACS‘𝑋)
∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) | 
| 39 | 21, 37, 38 | syl2anc 584 | . 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) | 
| 40 | 19, 39 | eqeltrrd 2842 | 1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |