Proof of Theorem acsfn1p
Step | Hyp | Ref
| Expression |
1 | | riinrab 5009 |
. . 3
⊢
(𝒫 𝑋 ∩
∩ 𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} |
2 | | inss2 4160 |
. . . . . . . . . 10
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 |
3 | 2 | sseli 3913 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → 𝑏 ∈ 𝑌) |
4 | 3 | biantrud 531 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → (𝑏 ∈ 𝑎 ↔ (𝑏 ∈ 𝑎 ∧ 𝑏 ∈ 𝑌))) |
5 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
6 | 5 | snss 4716 |
. . . . . . . . 9
⊢ (𝑏 ∈ 𝑎 ↔ {𝑏} ⊆ 𝑎) |
7 | 6 | bicomi 223 |
. . . . . . . 8
⊢ ({𝑏} ⊆ 𝑎 ↔ 𝑏 ∈ 𝑎) |
8 | | elin 3899 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝑎 ∩ 𝑌) ↔ (𝑏 ∈ 𝑎 ∧ 𝑏 ∈ 𝑌)) |
9 | 4, 7, 8 | 3bitr4g 313 |
. . . . . . 7
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → ({𝑏} ⊆ 𝑎 ↔ 𝑏 ∈ (𝑎 ∩ 𝑌))) |
10 | 9 | imbi1d 341 |
. . . . . 6
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → (({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎) ↔ (𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎))) |
11 | 10 | ralbiia 3089 |
. . . . 5
⊢
(∀𝑏 ∈
(𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎) ↔ ∀𝑏 ∈ (𝑋 ∩ 𝑌)(𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎)) |
12 | | elpwi 4539 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) |
13 | 12 | ssrind 4166 |
. . . . . . 7
⊢ (𝑎 ∈ 𝒫 𝑋 → (𝑎 ∩ 𝑌) ⊆ (𝑋 ∩ 𝑌)) |
14 | 13 | adantl 481 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (𝑎 ∩ 𝑌) ⊆ (𝑋 ∩ 𝑌)) |
15 | | ralss 3987 |
. . . . . 6
⊢ ((𝑎 ∩ 𝑌) ⊆ (𝑋 ∩ 𝑌) → (∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ (𝑋 ∩ 𝑌)(𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎))) |
16 | 14, 15 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ (𝑋 ∩ 𝑌)(𝑏 ∈ (𝑎 ∩ 𝑌) → 𝐸 ∈ 𝑎))) |
17 | 11, 16 | bitr4id 289 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) ∧ 𝑎 ∈ 𝒫 𝑋) → (∀𝑏 ∈ (𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎) ↔ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎)) |
18 | 17 | rabbidva 3402 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑋 ∩ 𝑌)({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎}) |
19 | 1, 18 | eqtrid 2790 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎}) |
20 | | mreacs 17284 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) |
21 | 20 | adantr 480 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) |
22 | | ssralv 3983 |
. . . . . 6
⊢ ((𝑋 ∩ 𝑌) ⊆ 𝑌 → (∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌)𝐸 ∈ 𝑋)) |
23 | 2, 22 | ax-mp 5 |
. . . . 5
⊢
(∀𝑏 ∈
𝑌 𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌)𝐸 ∈ 𝑋) |
24 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → 𝑋 ∈ 𝑉) |
25 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → 𝐸 ∈ 𝑋) |
26 | | inss1 4159 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 |
27 | 26 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝑋 ∩ 𝑌) → 𝑏 ∈ 𝑋) |
28 | 27 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → 𝑏 ∈ 𝑋) |
29 | 28 | snssd 4739 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → {𝑏} ⊆ 𝑋) |
30 | | snfi 8788 |
. . . . . . . . 9
⊢ {𝑏} ∈ Fin |
31 | 30 | a1i 11 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → {𝑏} ∈ Fin) |
32 | | acsfn 17285 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
33 | 24, 25, 29, 31, 32 | syl22anc 835 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) ∧ 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
34 | 33 | ex 412 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ (𝑋 ∩ 𝑌)) → (𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
35 | 34 | ralimdva 3102 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ (𝑋 ∩ 𝑌)𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
36 | 23, 35 | syl5 34 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋 → ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
37 | 36 | imp 406 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
38 | | mreriincl 17224 |
. . 3
⊢
(((ACS‘𝑋)
∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) |
39 | 21, 37, 38 | syl2anc 583 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ (𝑋 ∩ 𝑌){𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) |
40 | 19, 39 | eqeltrrd 2840 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |