Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneix3 Structured version   Visualization version   GIF version

Theorem ntrneix3 40528
Description: The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneix3 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneix3
StepHypRef Expression
1 dfss3 3949 . . . . . 6 ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))
2 ntrnei.o . . . . . . . . . . . . 13 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . . . . . . . 13 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . . . . . . . 13 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneiiex 40507 . . . . . . . . . . . 12 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
65ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
7 elmapi 8421 . . . . . . . . . . 11 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
86, 7syl 17 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
92, 3, 4ntrneibex 40504 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
109ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
1211elpwid 4543 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠𝐵)
13 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
1413elpwid 4543 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡𝐵)
1512, 14unssd 4155 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ⊆ 𝐵)
1610, 15sselpwd 5223 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
178, 16ffvelrnd 6845 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ∈ 𝒫 𝐵)
1817elpwid 4543 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ⊆ 𝐵)
19 ralss 4030 . . . . . . . 8 ((𝐼‘(𝑠𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
2018, 19syl 17 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
214ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
22 simpr 487 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
239ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ V)
24 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
2524elpwid 4543 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠𝐵)
26 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
2726elpwid 4543 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡𝐵)
2825, 27unssd 4155 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ⊆ 𝐵)
2923, 28sselpwd 5223 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
302, 3, 21, 22, 29ntrneiel 40512 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ (𝑠𝑡) ∈ (𝑁𝑥)))
31 elun 4118 . . . . . . . . . 10 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
322, 3, 21, 22, 24ntrneiel 40512 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
332, 3, 21, 22, 26ntrneiel 40512 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
3432, 33orbi12d 915 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
3531, 34syl5bb 285 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
3630, 35imbi12d 347 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ ((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3736ralbidva 3195 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
3820, 37bitrd 281 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
391, 38syl5bb 285 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
4039ralbidva 3195 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
41 ralcom 3353 . . . 4 (∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
4240, 41syl6bb 289 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
4342ralbidva 3195 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
44 ralcom 3353 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
4543, 44syl6bb 289 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) → (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wral 3137  {crab 3141  Vcvv 3491  cun 3927  wss 3929  𝒫 cpw 4532   class class class wbr 5059  cmpt 5139  wf 6344  cfv 6348  (class class class)co 7149  cmpo 7151  m cmap 8399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-map 8401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator