MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn2 Structured version   Visualization version   GIF version

Theorem acsfn2 16683
Description: Algebraicity of a two-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑉   𝑋,𝑎,𝑏,𝑐   𝐸,𝑎
Allowed substitution hints:   𝐸(𝑏,𝑐)

Proof of Theorem acsfn2
StepHypRef Expression
1 elpwi 4390 . . . . 5 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3895 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎)))
3 ralss 3895 . . . . . . . 8 (𝑎𝑋 → (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ ∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎))))
4 r19.21v 3169 . . . . . . . 8 (∀𝑐𝑎 (𝑏𝑎𝐸𝑎) ↔ (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎))
5 impexp 443 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ (𝑐𝑎 → (𝑏𝑎𝐸𝑎)))
6 vex 3417 . . . . . . . . . . . 12 𝑐 ∈ V
7 vex 3417 . . . . . . . . . . . 12 𝑏 ∈ V
86, 7prss 4571 . . . . . . . . . . 11 ((𝑐𝑎𝑏𝑎) ↔ {𝑐, 𝑏} ⊆ 𝑎)
98imbi1i 341 . . . . . . . . . 10 (((𝑐𝑎𝑏𝑎) → 𝐸𝑎) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
105, 9bitr3i 269 . . . . . . . . 9 ((𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
1110ralbii 3189 . . . . . . . 8 (∀𝑐𝑋 (𝑐𝑎 → (𝑏𝑎𝐸𝑎)) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎))
123, 4, 113bitr3g 305 . . . . . . 7 (𝑎𝑋 → ((𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1312ralbidv 3195 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑋 (𝑏𝑎 → ∀𝑐𝑎 𝐸𝑎) ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
142, 13bitrd 271 . . . . 5 (𝑎𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
151, 14syl 17 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎𝑐𝑎 𝐸𝑎 ↔ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)))
1615rabbiia 3397 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
17 riinrab 4818 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
1816, 17eqtr4i 2852 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)})
19 mreacs 16678 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
2019adantr 474 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
21 riinrab 4818 . . . . . . 7 (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}
2219ad2antrr 717 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
23 simpll 783 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝑋𝑉)
24 simprr 789 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → 𝐸𝑋)
25 prssi 4572 . . . . . . . . . . . . . 14 ((𝑐𝑋𝑏𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2625ancoms 452 . . . . . . . . . . . . 13 ((𝑏𝑋𝑐𝑋) → {𝑐, 𝑏} ⊆ 𝑋)
2726ad2ant2lr 754 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ⊆ 𝑋)
28 prfi 8510 . . . . . . . . . . . . 13 {𝑐, 𝑏} ∈ Fin
2928a1i 11 . . . . . . . . . . . 12 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑐, 𝑏} ∈ Fin)
30 acsfn 16679 . . . . . . . . . . . 12 (((𝑋𝑉𝐸𝑋) ∧ ({𝑐, 𝑏} ⊆ 𝑋 ∧ {𝑐, 𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3123, 24, 27, 29, 30syl22anc 872 . . . . . . . . . . 11 (((𝑋𝑉𝑏𝑋) ∧ (𝑐𝑋𝐸𝑋)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3231expr 450 . . . . . . . . . 10 (((𝑋𝑉𝑏𝑋) ∧ 𝑐𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3332ralimdva 3171 . . . . . . . . 9 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3433imp 397 . . . . . . . 8 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
35 mreriincl 16618 . . . . . . . 8 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3622, 34, 35syl2anc 579 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑐𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
3721, 36syl5eqelr 2911 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ ∀𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
3837ex 403 . . . . 5 ((𝑋𝑉𝑏𝑋) → (∀𝑐𝑋 𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
3938ralimdva 3171 . . . 4 (𝑋𝑉 → (∀𝑏𝑋𝑐𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
4039imp 397 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
41 mreriincl 16618 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4220, 40, 41syl2anc 579 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑐𝑋 ({𝑐, 𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
4318, 42syl5eqel 2910 1 ((𝑋𝑉 ∧ ∀𝑏𝑋𝑐𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎𝑐𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2164  wral 3117  {crab 3121  cin 3797  wss 3798  𝒫 cpw 4380  {cpr 4401   ciin 4743  cfv 6127  Fincfn 8228  Moorecmre 16602  ACScacs 16605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-fin 8232  df-mre 16606  df-mrc 16607  df-acs 16609
This theorem is referenced by:  submacs  17725  submgmacs  42665
  Copyright terms: Public domain W3C validator